24 resultados para HUMAN MULTIPOTENT MESENCHYMAL STROMAL CELLS
em DigitalCommons@The Texas Medical Center
Resumo:
Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.
Resumo:
The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.
Resumo:
Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^
Resumo:
A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^
Resumo:
Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^
Resumo:
The purpose of this project was to determine if stability of specific antibody secretion improved after fusion of Epstein-Barr virus (EBV)-transformed lymphoblastoid cells with P3X63Ag8.653 murine myeloma cells. Production of human monoclonal antibodies by Epstein-Barr virus transformation and somatic cell fusion has been used by many laboratories, however the steps involved have not been fully optimized. B lymphocytes isolated from the peripheral blood of normal donors were enriched for Thomsen-Friedenreich (T) antigen-reactive cells by panning on asialoglycophorin. The EBV-transformed lymphoblastoid cell lines generated from asialoglycophorin-adherent B lymphocytes were treated in three different manners: (1) cloned and maintained in culture as monoclonal lymphoblastoid cell lines, (2) cloned and fused with murine myeloma cells or (3) fused shortly after transfomation without prior cloning. Cloned lymphoblastoid cell lines maintained in culture without fusion either died or lost specific antibody secretion within five months. Uncloned lymphoblastoid cells remained viable for up to three months but lost specific antibody secretion within two months probably due to overgrowth by nonspecific clones. In an attempt to increase longevity and to stabilize specific antibody secretion by these cells, the cloned lymphoblastoid cells were fused with murine myeloma cells. In nine of ten fusions no hybrids were recovered. As an alternate approach, uncloned lymphoblastoid cells secreting T antigen-specific antibody were hybridized with murine myeloma cells, hybrids secreting T antigen-specific antibody were recovered in six of seven fusions. Furthermore, T antigen-specific antibodies of high titer were secreted by the heterohybridoma clones for more than five months of continuous culture. These heterohybridoma cells secreted more immunoglobulin, produced greater titers of antibody and maintained specific antibody secretion longer than either monoclonal or polyclonal EBV-transformed lymphoblastoid cells. These studies have conclusively demonstrated that fusion of polyclonal lymphoblastoid cells secreting T antigen-specific antibody with murine myeloma cells results in prolongation of human monoclonal antibody production compared with unfused monoclonal or polyclonal lymphoblastoid cell lines. This procedure should be generally applicable for the production of stable human monoclonal antibody-secreting cells lines from peripheral blood lymphocytes. ^
Resumo:
Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^
Resumo:
Prostate cancer (PCa) is one of the leading malignancies affecting men in the Western world. Although tremendous effort has been made towards understanding PCa development and developing clinical treatments in the past decades, the exact mechanisms of PCa are still not clearly understood. Emerging evidence has postulated that a population of stem cell-like cells inside a tumor, termed ‘cancer stem cells (CSCs)’, may be the cells responsible for tumor initiation, progression, recurrence, metastasis and therapy resistance. Like CSC studies in other cancer types, it has been reported that PCa also contains CSCs. However, there remain several unresolved questions that need to be clarified. First, the relationship between prostate CSCs (PCSCs) and therapy resistance (chemo- and radio-) is not known. Herein, we have found that not all CSCs are drug-tolerant, and not all drug-tolerant cells are CSCs. Second, whether primary human PCa (HPCa) actually contain PCSCs remains unclear, due to the well-known fact that we have yet to establish a reliable assay system that can reproducibly and faithfully reconstitute tumor regeneration from single HPCa cells. Herein, after utilizing more than 114 HPCa samples we have provided evidence that immortalized bone marrow-derived stromal cells (Hs5) can help dissociated HPCa cells generate undifferentiated tumors in immunodeficient NOD/SCID-IL2Rγ-/- mice, and the undifferentiated PCa cells seem to have a survival advantage to generate tumors. Third, the evolution of PCa from androgen dependent to the lethally castration resistant (CRPC) stage remains enigmatic, and the cells responsible for CRPC development have not been identified. Herein, we have found a putative cell population, ALDH+CD44+α2β1+ PCa cells that may represent a cell-of-origin for CRPC. Taken together, our work has improved our understanding of PCSC properties, possibly highlighting a potential therapeutic target for CRPC.
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.
Resumo:
OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.
Resumo:
Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^