4 resultados para HPV tumor
em DigitalCommons@The Texas Medical Center
Resumo:
Potent vaccine formulations ideally include adjuvants to activate innate immune responses and enhance antigen-specific adaptive immunity. The synthetic glycolipid alpha-Galactosylceramide (α-GalCer) effectively activates the innate immune mediating NKT cells to produce cytokines and activate downstream immune cells, resulting in development of humoral and cell mediated immune responses to co-administered antigens. While a single intravenous immunization of α-GalCer strongly activates NKT cells, multiple doses by this route are well documented to induce anergy in NKT cells. Anergy is defined as the deficiency in NKT proliferation and cytokine production, including IL-4 and IFNγ. However, our studies have shown that two doses of α-GalCer administered intranasally by the intranasal route leads to reactivation of NKT cells and improved adaptive immune responses after each subsequent dose. I therefore investigated the role of multiple routes of immunization in activation of NKT cells, i.e. anergy versus repeated activation. Specifically, I hypothesized that the differential capacity of NKT cells to produce IFNγ, as a result of route of immunization with α-GalCer, influences the induction of adaptive immune responses to co-administered antigen. Our experimental design utilizes the observation that intranasal immunization primarily induces immune responses in the lungs while intravenous immunization induces responses in the liver. Using intracellular cytokine staining for IFNγ production and Elispot analyses for determining NKT and T cell activation, respectively, it was determined that administering two consecutive intravenous doses resulted in anergy to NKT cells (no IFNγ production) in the liver and lack of adaptive immunity while second immunization by the intranasal route overcame anergy in the lung. The outcome in the other tissues analyzed was mixed and could be the result of tissue microenvironment among others possible reasons. When intranasal dosing preceded systemic, NKT cells were reactivated to produce IFNγ and induced positive adaptive immune responses in the responding lung tissue. These results indicate that the mechanism by which mucosal and systemic immunization routes activate NKT cells may differ in that there is a differential tissue-specific effect induced by each route. Future studies are necessary to determine the reason for these tissue-specific effects and how they relate to NKT cell activation.
Resumo:
Background. HPV is the underlying cause of cervical cancer, a malignant tumor of the female genital tract. Each year, cervical cancer is newly diagnosed in approximately 10,000 women, and over 3,000 women die from the malignancy. In addition, HPV is implicated as a cause of other cancers involving the genital tract, male and female, and the head and neck. ^ Gardasil, a vaccine against HPV, was licensed by the FDA in June 2006. Early study results have shown Gardasil to be safe and effective at preventing HPV infections that are commonly associated with the development of cervical cancer, as well as other HPV-related cancers and genital warts. The vaccine is most effective when administered in childhood, before initial exposure to HPV, which typically occurs shortly after the onset of sexual activity. Accordingly, the CDC's Advisory Committee on Immunization Practices (ACIP) has recommended routine vaccination of females aged 11-12 years. ^ Taking the ACIP recommendation one step further, many states have considered school-based mandates of the HPV vaccine in an attempt to reduce the burden of HPV-related illness, in particular to reduce the disparately high incidence of cervical cancer in medically underserved populations. These mandate attempts have sparked heated debate—highlighting public concerns regarding adolescent sexuality, corporate greed, and vaccines in general. ^ Methods. My research focuses on publicly available sources of information such as medical journals, government reports (federal and state), NGO reports, newspapers, and books. I begin with a background discussion of HPV, cervical cancer, and the HPV vaccine. I then discuss public health policy issues related to vaccines, vaccine mandates, and HPV-related illness. Specifically, I discuss the public health benefit of previous vaccine mandates, the legality of vaccine mandates, and the undue corporate influence on the politics of instituting HPV vaccine mandates. In addition, I examine some of the causes behind the anti-vaccine movement and the controversy surrounding adolescent sexuality as it pertains to the HPV vaccine. In the final section, I focus on the recent failed attempt by Governor Rick Perry to mandate the HPV vaccine in Texas. A retrospective analysis of Governor Perry's policy decisions is undertaken and recommendations are made regarding future attempts to mandate the HPV vaccine, or other vaccines under development for similar sexually transmitted viral diseases such as HIV and herpes simplex. ^ Results. In Texas, as in other states across the country, HPV vaccine mandates faced opposition from those who, while they may support mandates of other vaccines, oppose mandates for the HPV vaccine based largely on the idea that HPV is a sexually transmitted disease—they see responsible sexual behavior as the appropriate method for preventing HPV-related illness. A second major group of opposition comes from those who are generally opposed to all vaccine mandates, due to concerns that mandates are intended primarily for the financial benefit of the pharmaceutical industry or due to concerns—largely unfounded—that vaccines pose a greater health threat than the illnesses they are designed to prevent. ^ Conclusion. In order to reduce opposition to vaccine mandates, care must be taken to educate the public regarding the benefits of vaccination by mobilizing the public health sector, avoid the impression that the decision to institute mandates is rash or pressured by allowing time for open debate, and minimize lobbying efforts by vaccine manufacturers. ^
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
The p53-family of proteins regulates expression of target genes during tissue development and differentiation. Within the p53-family, p53 and p73 have hepatic-specific functions in development and tumor suppression. Despite a growing list of p53/p73 target genes, very few of these have been studied in vivo, and the knowledge regarding functions of p53 and p73 in normal tissues remains limited. p53+/-p73+/- mice develop hepatocellular carcinoma (HCC), whereas overexpression of p53 in human HCC leads to tumor regression. However, the mechanism of p53/p73 function in liver remains poorly characterized. Here, the model of mouse liver regeneration is used to identify new target genes for p53/p73 in normal quiescent vs. proliferating cells. In response to surgical removal of ~2/3 of liver mass (partial hepatectomy, PH), the remaining hepatocytes exit G0 of cell cycle and undergo proliferation to reestablish liver mass. The hypothesis tested in this work is that p53/p73 functions in cell cycle arrest, apoptosis and senescence are repressed during liver regeneration, and reactivated at the end of the regenerative response. Chromatin immunoprecipitation (ChIP), with a p73-antibody, was used to probe arrayed genomic sequences (ChIP-chip) and uncover 158 potential targets of p73-regulation in normal liver. Global microarray analysis of mRNA levels, at T=0-48h following PH, revealed sets of genes that change expression during regeneration. Eighteen p73-bound genes changed expression after PH. Four of these genes, Foxo3, Jak1, Pea15, and Tuba1 have p53 response elements (p53REs), identified in silico within the upstream regulatory region. Forkhead transcription factor Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative, cellular proliferation. p53 and p73 bind a Foxo3 p53RE and maintain active expression in quiescent liver. During liver regeneration, binding of p53 and p73, recruitment of acetyltransferase p300, and an active chromatin structure of Foxo3 are disrupted, alongside loss of Foxo3 expression. These parameters of Foxo3 regulation are reestablished at completion of liver growth and regeneration, supporting a temporary suspension of p53 and p73 regulatory functions in normal cells during tissue regeneration.