5 resultados para HLA-DR

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most potent antigen-presenting cells for inducing immune responses to tumor cells. Lin−HLA-DR + DC populations in peripheral blood mononuclear cells (PBMCs) and in ascites mononuclear leukocytes (MNLs) of patients with epithelial ovarian cancer (EOC) are phenotypically immature. Lin−HLA-DR + DCs from PBMCs of normal subjects and EOC patients and MNLs from ascites cells of patients were examined for specific cell surface markers or indicators of differentiation or activation. Separating Lin− HLA-DR+ DCs into subsets based on their HLA-DR intensity provided an additional method for identifying the two major lineages of DCs, myeloid and plasmacytoid. The activation potential of these DCs following exposure to the maturation agents CD40 ligand (CD40L) and lipopolysaccharide (LPS) was examined by measurement of IL-12 and IL-10 concentrations in DC culture supernatants in addition to their ability to stimulate allogeneic T cells. DCs from PBMCs of normal subjects and EOC patients and DCs isolated from ascites MNLs of EOC patients were separated into subsets based on CD11c and CD123 cell surface marker expression identifying the major DC types. These subsets were then compared with cells sorted on the basis of HLA-DR intensity. The in vivo behavior of DCs and DC subsets in peripheral blood and ascites following treatment of peritoneal carcinoma patients with the growth factor fins-like tyrosine kinase 3 ligand (Flt3L) was also examined. Increases in proportions and total numbers of DCs from peripheral blood and ascites were associated with increased secretion of IL-12 and IL-10 following in vitro activation of cultured DCs. There were differences between DCs from PBMCs and ascites and between DC subsets in expression of cell surface markers, cytokine profile, and the ability of Lin−HLA-DR + cells to stimulate proliferation of allogeneic T cells from EOC patients. These Lin−HLA-DR+ cells have certain functional properties that suggest that they could have the potential to facilitate an adaptive anti-tumor immune response. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin C (ascorbic acid--AA) can have a substantial impact on human health by reducing the incidence and/or severity of coryza. Studies also suggest it has immunomodulatory functions in humans. Immune function is controlled by cytokines, such as type-1 cytokines (IFNγ) that promote antiviral immunity and type-2 cytokines (IL-4, IL-10) that promote humoral immunity. Knowing the mechanisms responsible for both antiviral immunity and type-1/type-2 cytokine balance, we sought to identify AA-induced alterations of human peripheral blood mononuclear cells (PBMC) in vivo and in vitro . We hypothesized that AA modulates the immune system, altering both number and function of PBMC. We first described the effect of 14 days of oral (1 gram) AA in healthy subjects. AA increased circulating natural killer (NK) cells, CD25+ and HLA-DR+ T cells, and PMA/ionomycin-stimulated intracellular IFNγ. We subsequently developed models for in vitro use. We determined that AA was toxic in vitro to T cells when used at doses found intracellularly but doses found in plasma from individuals taking 1gm/day AA were nontoxic. The model that most fully reproduced our in vivo intracellular cytokine findings used dehydroascorbic acid and buffers to deliver AA intracellularly. This model generated the largest increase in IFNγ at physiologic plasma concentrations. Previous studies demonstrate that chronic psychological stress is associated with a type-2 cytokine response. We hypothesized that vitamin C could prevent the type-2 cytokine shift associated with stress. In a study of medical students taking 1 g AA or placebo, a significant increase in IFNγ was seen intracellularly in CD4+ and CD8+ cells and in tetanus-stimulated cultures in the AA group only. We also observed increases in IFNγ/IL-4 and IFNγ/IL-10 ratios with AA supplementation, indicating a type-1 shift. Furthermore, we noted increased numbers of NK cells and activated T cells in the peripheral blood in the AA treated group only. Lastly, we investigated the role of the CD40L/CD40 and CD28/B7 costimulatory pathway in these cytokine alterations. AA did not have any effect on either pathway studied. Thus costimulatory pathways are not contributing to AA induced modulation of the type-1/type-2 immune balance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research characterized a serologically indistinguishable form of HLA-DR1 that: (1) cannot stimulate some DR1-restricted or specific T-lymphocyte clones; (2) displays an unusual electrophoretic pattern on two dimensional gels; and (3) is marked by a polymorphic restriction site of the alpha gene. Inefficient stimulation of some DR1-restricted clones was a property of DR1$\sp{+}$ cells that shared HLA-B14 on the same haplotype and/or were carriers of 21-hydroxylase (21-OH) deficiency. Nonclassical 21-OH deficiency frequently demonstrates genetic linkage with HLA-B14;DR1 haplotypes and associates with duplications of C4B and one 21-OH gene. Cells having both stimulatory (DR1$\sb{\rm n}$) and nonstimulatory (DR1$\sb{\rm x}$) parental haplotypes did not mediate proliferation of these clones. However, heterozygous DR1$\sb{\rm x}$, 2 and DR1$\sb{\rm x}$, 7 cells were efficient stimulators of DR2 and DR7 specific clones, respectively, suggesting that a trans acting factor may modify DR1 alleles or products to yield a dominant DR1$\sb{\rm x}$ phenotype. Incompetent stimulator populations did not secrete an intercellular soluble or contact dependent suppressor factor nor did they express interleukin-2 receptors competing for T-cell growth factors. Two dimensional gel analysis of anti-DR immunoprecipitates revealed, in addition to normal DR$\alpha$ and DR$\beta$ chains, a 50kD species from DR1$\sb{\rm x}$ but not from the majority of DR1$\sb{\rm n}$ or non-DR1 cells. The 50kD structure was stable under reducing conditions in SDS and urea, had antigenic homology with DR, and dissociated after boiling into 34kD and 28kD peptide chains apparently identical with DR$\alpha$ and DR$\beta$ as shown by limited digest peptide maps. N-linked glycosylation and sialation of DRgp50 appeared to be unchanged from normal DR$\alpha$ and DR$\beta$. Bg1II digestion and $DR\alpha$ probing of DR1$\sb{\rm x}$ genomic DNA revealed a 4.5kb fragment while DR1$\sb{\rm n}$ DNA yielded 3.8 and 0.76kb fragments; all restriction sites mapped to the 3$\sp\prime$ untranslated region of $DR\alpha$. Collectively, these data suggest that DRgp50 represents a novel combinatorial association between constitutive chains of DR that may interfere with or compete for normal T cell receptor recognition of DR1 as both an alloantigen and restricting element. Furthermore, extensive chromosomal abnormalities previously mapped to the class III region of B14;DR1 haplotypes may extend into the adjacent class II region with consequent intrusion on immune function. ^