3 resultados para HEAT TREATMENT

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane bound, respiratory nitrate reductase in Escherichia coli is composed of three subunits, αβγ. The active complex is anchored to the membrane by membrane-integrated γ subunit and can reduce nitrate to nitrite with membrane quinones, (ubiquinone or menaquinone) as physiological electron donors. The transfer of electrons through the complex is thought to involve the sequence: membrane quinols → b-type hemes (γ subunit) → Fe-S centers (β subunit) → molybdopterin (α subunit) → nitrate. The enzyme can be assayed with the artificial electron donor reduced methyl viologen (MVH) which transfers electrons directly to the molybdopterin cofactor. These studies have focused on the possible role of protein-bound menaquinone in the structure and function of this multisubunit complex. ^ Nitrate reductase was purified as two distinct forms; after solubilization of membrane proteins with detergents, purification rendered an αβγ complex (holoenzyme) which catalyzes nitrate reduction with MVH or the quinols analogs, menadiol and duroquinol, as electron donors. Alternatively, heat-treatment of the membranes in the absence of detergents and subsequent purification of the active enzyme produced an αβ complex, which reduces nitrate only with MVH as electron donor. The active αβ dimer was also separated from γ subunit by heat treatment of the holoenzyme. ^ Menaquinone-9 was isolated directly from the purified αβ complex, and identified by mass spectrometry. Based on the composition of the membrane quinone pool, it was concluded that menaquinone-9 is sequestered from the membrane pool in a specifically protein-bound form. ^ The role of the bound menaquinone in the structure-function of nitrate reductase was also investigated, along with its participation in UV-light inactivation of the enzyme. Menaquinone-depleted nitrate reductase from a menaquinone deficient mutant retained activity with all electron donors and it remained sensitive to UV inactivation. However, the MVH-nitrate reductase activity and the rate of UV inactivation of the enzyme were significantly reduced and the optical properties of the enzyme were modified by the absence of the bound menaquinone-9. ^ Menaquinone-9 is not absolutely required for electron transfer in nitrate reductase but it appears to be specifically-bound during assembly of the complex and to enhance the transfer of electrons through the complex. The possible plasticity of the functional electron transfer pathway in nitrate reductase is discussed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrophysiological studies were conducted to test the hypothesis that alterations in intestinal epithelial function are associated with immunological responses directed against the enteric parasite, Trichinella spirals. Trichinella antigens were used to challenge sensitized jejunum from infected guinea pigs while monitoring ion transport properties of the tissue in an Ussing-type chamber. The addition of antigen caused increases in transepithelial PD and I(,sc) that were rapidly induced, peaked at 1.5 to 2 min after antigen-challenge, and lasted 10 to 20 min thereafter. The increase in I(,sc) ((DELTA)I(,sc)) varied in a dose-dependent manner until a maximal increase of 40 (mu)A/cm('2) was obtained by the addition of 13 (mu)g of antigenic protein per ml of serosal fluid in the Ussing chamber. Trichinella antigen did not elicit alterations in either PD or I(,sc) of nonimmune tissue. Jejunal tissue from guinea pigs immunized with ovalbumin according to a protocol that stimulated homocytotropic antibody production responded electrically to challenge with ovalbumin but not trichinella antigen. Jejunal tissue which was passively sensitized with immune serum having a passive cutaneous anaphylaxis (PCA) titer of 32 for both IgE and IgG(,1) anti-trichinella anti-bodies responded electrically after exposure to trichinella antigen. Heat treatment of immune serum abolished the anti-trichinella IgE titer as determined by the PCA test but did not decrease either the electrical response of passively sensitized tissue to antigen or the anaphylactically mediated intestinal smooth muscle contractile response to antigen in the classical Schultz-Dale assay. These results strongly support the hypothesis that immunological responses directed against Trichinella Spiralis alter intestinal epithelial function and suggest that immediate hypersensitivity is the immunological basis of the response.^ Additional studies were performed to test the hypothesis that histamine and prostaglandins that are released from mucosal mast cells during IgE or IgG(,1) - antigen stimulated degranulation mediate electrophysiological changes in the intestinal epithelium that are reflective of Cl('-) secretion and mediated intracellularly by cAMP. Pharmacological and biochemical studies were performed to determine the physiological messengers and ionic basis of electrical alterations in small intestinal epithelium of the guinea pig during in vitro anaphylaxis. Results suggest that Cl('-) secretion mediated, in part, by cAMP contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting epithelial responses. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies have demonstrated a variable response to ozone among individuals and animal species and strains. For instance, C57BL/6J mice have a greater inflammatory response to ozone exposure than C3H/HeJ mice. In these studies, I utilized these strain differences in an effort to derive a mechanistic explanation to the variable strain sensitivity to ozone exposure. Therefore, alveolar macrophages (AM) from C57BL/6J and C3H/HeJ mice were exposed in vitro to hydrogen peroxide ($\rm H\sb2O\sb2$), heat and acetyl ceramide or in vivo to ozone. Necrosis and DNA fragmentation in macrophages from the two murine strains were determined to assess cytotoxicity following these treatments. In addition, synthesis and expression of the stress proteins, stress protein 72 (SP72) and heme oxygenase (HO-1), were examined following treatments. The in vitro experiments were conducted to eliminate the possibility of in vivo confounders (i.e., differences in breathing rates in the two strains) and thus directly implicate some inherent difference between cells from the two murine strains. $\rm H\sb2O\sb2$ and heat caused greater cytotoxicity in AM from C57BL/6J than C3H/HeJ mice and DNA fragmentation was a particularly sensitive indicator of cell injury. Similarly, AM from C57BL/6J mice were more sensitive to ozone exposure than cells from C3H/HeJ mice. Exposure to either 1 or 0.4 ppm ozone caused greater cytotoxicity in macrophages from C57BL/6J mice compared to macrophages from C3H/HeJ mice. The increased sensitivity of AM to injury was associated with decreased synthesis and expression of stress proteins. AM from C57BL/6J mice synthesized and expressed significantly less stress proteins in response to heat and ozone than AM from C3H/HeJ mice. Heat treatment resulted in greater synthesis and expression of SP72. In addition, macrophages from C57BL/6J mice expressed lower amounts of HO-1 than macrophages from C3H/HeJ mice following 0.4 ppm ozone exposure. Therefore, AM from C57BL/6J mice are more susceptible to oxidative injury than AM from C3H/HeJ mice which might be due to differential expression of stress proteins in these cells. ^