5 resultados para HBOC
em DigitalCommons@The Texas Medical Center
Resumo:
Hereditary breast and ovarian cancer (HBOC) is caused by a mutation in the BRCA1 or BRCA2 genes. Women with a BRCA1/2 mutation are at increased risks for breast and ovarian cancer and often develop cancer at an earlier age than the general population. However, some women with a BRCA1/2 mutation do not develop breast or ovarian cancer under the age of 50 years. There have been no specific studies on BRCA positive women with no cancer prior to age 50, therefore this study sought to investigate factors within these women with no cancer under age 50 with respect to reproductive risk factors, BMI, tumor pathology, screening history, risk-reducing surgeries, and family history. 241 women were diagnosed with cancer prior to age 50, 92 with cancer at age 50 or older, and 20 women were over age 50 with no cancer. Data were stratified based on BRCA1 and BRCA2 mutation status. Within the cohorts we investigated differences between women who developed cancer prior to age 50 and those who developed cancer at age 50 or older. We also investigated the differences between women who developed cancer at age 50 or older and those who were age 50 or older with no cancer. Of the 92 women with a BRCA1/2 mutation who developed cancer at age 50 or older, 46 developed ovarian cancer first, 45 developed breast cancer, and one had breast and ovarian cancer diagnosed synchronously. BRCA2 carriers diagnosed age 50 or older were more likely to have ER/PR negative breast tumors when compared to BRCA2 carriers who were diagnosed before age 50. This is consistent with one other study that has been performed. Ashkenazi Jewish women with a BRCA1 mutation were more likely to be diagnosed age 50 or older than other ethnicities. Hispanic women with a BRCA2 mutation were more likely to be diagnosed prior to age 50 when compared to other ethnicities. No differences in reproductive factors or BMI were observed. Further characterization of BRCA positive women with no cancer prior to age 50 may aid in finding factors important in the development of breast or ovarian cancer.
Resumo:
Up to 10% of all breast and ovarian cancers are attributable to mutations in cancer susceptibility genes. Clinical genetic testing for deleterious gene mutations that predispose to hereditary breast and ovarian cancer (HBOC) syndrome is available. Mutation carriers may benefit from following high-risk guidelines for cancer prevention and early detection; however, few studies have reported the uptake of clinical genetic testing for HBOC. This study identified predictors of HBOC genetic testing uptake among a case series of 268 women who underwent genetic counseling at The University of Texas M. D. Anderson Cancer Center from October, 1996, through July, 2000. Women completed a baseline questionnaire that measured psychosocial and demographic variables. Additional medical characteristics were obtained from the medical charts. Logistic regression modeling identified predictors of participation in HBOC genetic testing. Psychological variables were hypothesized to be the strongest predictors of testing uptake—in particular, one's readiness (intention) to have testing. Testing uptake among all women in this study was 37% (n = 99). Contrary to the hypotheses, one's actual risk of carrying a BRCA1 or BRCA2 gene mutation was the strongest predictor of testing participation (OR = 15.37, CI = 5.15, 45.86). Other predictors included religious background, greater readiness to have testing, knowledge about HBOC and genetic testing, not having female children, and adherence to breast self-exam. Among the subgroup of women who were at ≥10% risk of carrying a mutation, 51% (n = 90) had genetic testing. Consistent with the hypotheses, predictors of testing participation in the high-risk subgroup included greater readiness to have testing, knowledge, and greater self-efficacy regarding one's ability to cope with test results. Women with CES-D scores ≥16, indicating the presence of depressive symptoms, were less likely to have genetic testing. Results indicate that among women with a wide range of risk for HBOC, actual risk of carrying an HBOC-predisposing mutation may be the strongest predictor of their decision to have genetic testing. Psychological variables (e.g., distress and self-efficacy) may influence testing participation only among women at highest risk of carrying a mutation, for whom genetic testing is most likely to be informative. ^
Resumo:
ACCURACY OF THE BRCAPRO RISK ASSESSMENT MODEL IN MALES PRESENTING TO MD ANDERSON FOR BRCA TESTING Publication No. _______ Carolyn A. Garby, B.S. Supervisory Professor: Banu Arun, M.D. Hereditary Breast and Ovarian Cancer (HBOC) syndrome is due to mutations in BRCA1 and BRCA2 genes. Women with HBOC have high risks to develop breast and ovarian cancers. Males with HBOC are commonly overlooked because male breast cancer is rare and other male cancer risks such as prostate and pancreatic cancers are relatively low. BRCA genetic testing is indicated for men as it is currently estimated that 4-40% of male breast cancers result from a BRCA1 or BRCA2 mutation (Ottini, 2010) and management recommendations can be made based on genetic test results. Risk assessment models are available to provide the individualized likelihood to have a BRCA mutation. Only one study has been conducted to date to evaluate the accuracy of BRCAPro in males and was based on a cohort of Italian males and utilized an older version of BRCAPro. The objective of this study is to determine if BRCAPro5.1 is a valid risk assessment model for males who present to MD Anderson Cancer Center for BRCA genetic testing. BRCAPro has been previously validated for determining the probability of carrying a BRCA mutation, however has not been further examined particularly in males. The total cohort consisted of 152 males who had undergone BRCA genetic testing. The cohort was stratified by indication for genetic counseling. Indications included having a known familial BRCA mutation, having a personal diagnosis of a BRCA-related cancer, or having a family history suggestive of HBOC. Overall there were 22 (14.47%) BRCA1+ males and 25 (16.45%) BRCA2+ males. Receiver operating characteristic curves were constructed for the cohort overall, for each particular indication, as well as for each cancer subtype. Our findings revealed that the BRCAPro5.1 model had perfect discriminating ability at a threshold of 56.2 for males with breast cancer, however only 2 (4.35%) of 46 were found to have BRCA2 mutations. These results are significantly lower than the high approximation (40%) reported in previous literature. BRCAPro does perform well in certain situations for men. Future investigation of male breast cancer and men at risk for BRCA mutations is necessary to provide a more accurate risk assessment.
Resumo:
Breast cancer is the most common cancer diagnosis and second leading cause of death in women. Risk factors associated with breast cancer include: increased age, alcohol consumption, cigarette smoking, white race, physical inactivity, benign breast conditions, reproductive and hormonal factors, dietary factors, and family history. Hereditary breast and ovarian cancer syndrome (HBOC) is caused by mutations in the BRCA1 and BRCA2 genes. Women carrying a mutation in these genes are at an increased risk to develop a second breast cancer. Contralateral breast cancer is the most common second primary cancer in patients treated for a first breast cancer. Other risk factors for developing contralateral breast cancer include a strong family history of breast cancer, age of onset of first primary breast cancer, and if the first primary was a lobular carcinoma, which has an increased risk of being bilateral. A retrospective chart review was performed on a select cohort of women in an IRB approved database at MD Anderson Cancer Center. The final cohort contained 572 women who tested negative for a BRCA1 or BRCA2 mutation, had their primary invasive breast cancer diagnosed under the age of 50, and had a BRCAPro risk assessment number over 10%. Of the 572 women, 97 women developed contralateral breast cancer. A number of predictors of contralateral breast cancer were looked at between the two groups. Using univariable Cox Proportional Hazard model, thirteen statistically interesting risk factors were found, defined as having a p-value under 0.2. Multivariable stepwise Cox Proportional Hazard model found four statistically significant variables out of the thirteen found in the univariable analysis. In our study population, the incidence of contralateral breast cancer was 17%. Four statistically significant variables were identified. Undergoing a prophylactic mastectomy was found to reduce the risk of developing contralateral breast cancer, while not having a prophylactic mastecomy, a young age at primary diagnosis, having a positive estrogen receptor status of the primary tumor, and having a family history of breast cancer increased a woman’s risk to develop contralateral breast cancer.
Resumo:
Hereditary breast and ovarian cancer (HBOC) is an inherited cancer syndrome that is associated with mutations in the BRCA1 and BRCA2 genes. Carriers of BRCA mutations, both men and women, are at an increased risk for developing certain cancers. Carriers are most notably at an increased risk to develop breast and ovarian cancers; however an increased risk for prostate cancer, melanoma, and pancreatic cancers has also been associated with these mutations. In 2009 the American Congress of Obstetricians and Gynecologists (ACOG) released a practice bulletin stating that evaluating a patient’s risk for HBOC should be a routine part of obstetric and gynecologic practice. A survey was created and completed by 83 obstetricians and gynecologists in the greater Houston, TX area. The survey consisted of four sections designed to capture demographic information, attitudes towards HBOC and BRCA testing, utilization of BRCA testing, and the overall knowledge of respondents with regards to HBOC and BRCA testing. This study found that the majority of participants indicated that they felt that obstetricians and gynecologists should have the primary responsibility of identifying patients who may be at increased risk of carrying a BRCA mutation. Moreover, this study found that the majority of participants indicated that they felt comfortable or very comfortable in identifying patients at an increased risk of carrying a BRCA mutation. However, only about a quarter of participants indicated that they order BRCA genetic testing one to two times per month or more. Lastly, this study demonstrates that the overall knowledge of HBOC and BRCA testing among this population of obstetricians and gynecologists is poor. The results of this study stress the need for more education regarding HBOC, genetic testing, and strategies for identifying patients that may be at risk for having a mutation in a BRCA gene. Furthermore, it reiterates the importance of raising awareness to current practice guidelines and recommendations that can assist obstetricians and gynecologist to better identify and manage patients that may be at an increased risk of having HBOC.