9 resultados para Glycine Residues

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

POLN is a nuclear A-family DNA polymerase encoded in vertebrate genomes. POLN has unusual fidelity and DNA lesion bypass properties, including strong strand displacement activity, low fidelity favoring incorporation of T for template G and accurate translesion synthesis past a 5S-thymine glycol (5S-Tg). We searched for conserved features of the polymerase domain that distinguish it from prokaryotic pol I-type DNA polymerases. A Lys residue (679 in human POLN) of particular interest was identified in the conserved 'O-helix' of motif 4 in the fingers sub-domain. The corresponding residue is one of the most important for controlling fidelity of prokaryotic pol I and is a nonpolar Ala or Thr in those enzymes. Kinetic measurements show that K679A or K679T POLN mutant DNA polymerases have full activity on nondamaged templates, but poorly incorporate T opposite template G and do not bypass 5S-Tg efficiently. We also found that a conserved Tyr residue in the same motif not only affects sensitivity to dideoxynucleotides, but also greatly influences enzyme activity, fidelity and bypass. Protein sequence alignment reveals that POLN has three specific insertions in the DNA polymerase domain. The results demonstrate that residues have been strictly retained during evolution that confer unique bypass and fidelity properties on POLN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pepper (Capsicum annuum) serotonin N-hydroxycinnamoyltransferase (SHT) catalyzes the synthesis of N-hydroxycinnamic acid amides of serotonin, including feruloylserotonin and p-coumaroylserotonin. To elucidate the domain or the key amino acid that determines the amine substrate specificity, we isolated a tyramine N-hydroxycinnamoyltransferase (THT) gene from pepper. Purified recombinant THT protein catalyzed the synthesis of N-hydroxycinnamic acid amides of tyramine, including feruloyltyramine and p-coumaroyltyramine, but did not accept serotonin as a substrate. Both the SHT and THT mRNAs were found to be expressed constitutively in all pepper organs. Pepper SHT and THT, which have primary sequences that are 78% identical, were used as models to investigate the structural determinants responsible for their distinct substrate specificities and other enzymatic properties. A series of chimeric genes was constructed by reciprocal exchange of DNA segments between the SHT and THT cDNAs. Functional characterization of the recombinant chimeric proteins revealed that the amino acid residues 129 to 165 of SHT and the corresponding residues 125 to 160 in THT are critical structural determinants for amine substrate specificity. Several amino acids are strongly implicated in the determination of amine substrate specificity, in which glycine-158 is involved in catalysis and amine substrate binding and tyrosine-149 plays a pivotal role in controlling amine substrate specificity between serotonin and tyramine in SHT. Furthermore, the indisputable role of tyrosine is corroborated by the THT-F145Y mutant that uses serotonin as the acyl acceptor. The results from the chimeras and the kinetic measurements will direct the creation of additional novel N-hydroxycinnamoyltransferases from the various N-hydroxycinnamoyltransferases found in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215-Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200-Thr and Val-210-Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinal's photoisomerized C(13)=C(14) double bond to residues in the membrane-embedded alpha-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRII's hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical modification of cytochrome P-450 reductase was used to determine the involvement of charged amino acids in the interaction between the reductase and two forms of cytochrome P-450. Acetylation of 11 lysine residues of the reductase with acetic anhydride yielded a 20-40% decrease in the K$\sb{\rm m}$ of the reductase for cytochrome P-450b or cytochrome P-450c. Modification of carboxyl groups on the reductase with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and methylamine, glycine methyl ester, or taurine as nucleophiles inhibited the interaction with the cytochromes P-450. We were able to modify 4.0, 7.9, and 5.9 carboxyl groups using methylamine, glycine methyl ester, and taurine, respectively. The apparent K$\sb{\rm m}$ for cytochrome P-450c or cytochrome P-450b was increased 1.3 to 5.2 fold. There were varied effects on the V$\sb{\rm max}$. There was no significant change in the conformation of the reductase upon chemical modification. These results strongly suggest that electrostatic interactions as well as steric constraints play a role in the binding and electron transfer step(s) between the reductase and cytochrome P-450. Cytochrome P-450 protected 0.8 moles of carboxyl residues on the reductase from being modified with EDC. These protected amino acids on the reductase are presumably involved in binding to cytochrome P-450. The specific peptide containing these amino acids has been identified. ^

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium constant (K(,c)) under physiological conditions (38(DEGREES)C, 0.25 M ionic strength (I), pH 7.0) for the glycine synthase (GS) reaction (E C 2.1.2.1.0) (Equation 1) has been determined. (UNFORMATTED TABLE FOLLOWS)^ 5,10-CH(,2)-H(,4)Folate NADH NH (,4)+ CO(,2) ^ K(,c) = Eq. 1^ H(,4)Folate NAD('+) GLY ^(TABLE ENDS)^ The enzymatic instability of the GS enzyme complex itself has made it necessary to determine the overall K(,c) from the product of constants for the partial reactions of GS determined separately under the same conditions. The partial reactions are the H(,4)Folate-formaldehyde (CH(,2)(OH)(,2)) condensation reaction (Reaction 1) the K(,c) for which has been reported by this laboratory (3.0 x 10('4)), the lipoate (LipS(,2)) dehydrogenase reaction (LipDH) (Reaction 2) and the Gly-Lip^ decarboxylase reaction (Reaction 3) forming reduced lipoate (Lip(SH)(,2)), NH(,4)('+), CO(,2) and CH(,2)(OH)(,2.) (UNFORMATTED TABLE FOLLOWS)(,)^ H(,4)Fote + CH(,2)(OH)(,2) 5,10-CH(,2)-H(,4)Folate (1)^ Lip(SH)(,2) + NAD('+) LipS(,2) + NADH + H('+) (2)^ H('+) + Gly + LipS(,2) Lip(SH)(,2) + NH(,4)('+) CO(,2) + CH(,2)(OH)(,2) (3)^(TABLE ENDS)^ In this work the K(,c) for Reactions 2 and 3 are reported.^ The K(,c)' for the LipDH reaction described by other authors was reported with unexplainable conclusions regarding the pH depend- ence for the reaction. These conclusions would imply otherwise unexpected acid dissociation constants for reduced and oxidized lipoate. The pK(,a)',s for these compounds have been determined to resolve discrepancy. The conclusions are as follows: (1) The K(,c) for the LipDH reaction is 2.08 x 10('-8); (2) The pK(,a)',s for Lip(SH)(,2) are 4.77(-COOH), 9.91(-SH), 11.59(-SH); for LipS(,2) the carboxyl pK(,a)' is 4.77; (3) Contrary to previous literature, the log K(,c)' for the LipDH reaction is a linear function of the pH, a conclusion supported by the values for the dissociation constants.^ The K(,c) for Reaction 3 is the product of constants for Reactions 4-7. (UNFORMATTED TABLE FOLLOWS)^ LipSHSCH(,2)OH + H(,2)O Lip(SH)(,2) + CH(,2)(OH)(,2) (4)^ H(,2)O + LipSHSCH(,2)NH(,3)('+) LipSHSCH(,2)OH + NH(,4)('+) (5)^ LipSHSCH(,2)NH(,2) + H('+) LipSHSCH(,2)NH(,3)('+) (6)^ Gly + LipS(,2) LipSHSCH(,2)NH(,2) + CO(,2) (7)^(TABLE ENDS)^ Reactions 4-6 are non-enzymatic reactions whose constants were determined spectrophotometrically. Reaction 7 was catalyzed by the partially purified P-protein of GS with equilibrium approached from both directions. The value for K(,c) for this reaction is 8.15 x 10('-3). The combined K(,c) for Reactions 4-7 or Reaction 3 is 2.4 M.^ The overall K(,c) for the GS reaction determined by combination of values for Reactions 1-3 is 1.56 x 10('-3). ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small leucine-rich repeat proteoglycans (or SLRPs) are a group of extracellular proteins (ECM) that belong to the leucine-rich repeat (LRR) superfamily of proteins. The LRR is a protein folding motif composed of 20–30 amino acids with leucines in conserved positions. LRR-containing proteins are present in a broad spectrum of organisms and possess diverse cellular functions and localization. In mammals, the SLRPs are abundant in connective tissues, such as bones, cartilage, tendons, skin, and blood vessels. We have discovered a new member of the class I small leucine rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N-terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9g21.3 where asporin is part of a SLRP gene cluster that includes ECM2, osteoadherin, and osteoglycin. This gene cluster of four LRR-encoding genes is embedded in a 238 kilobase intron of another novel gene named Tes9orf that is expressed primarily in the testes of the adult mouse. The SLRP genes are not present in Drosophila or C. elegans , but reside in three separate gene clusters in the puffer fish, mice and humans. Targeted disruption of individual mouse SLRP genes display minor connective tissue defects such as skin fragility, tendon laxity, minor growth plate defects, and mild osteoporosis. However, double and triple knockouts of SLRP genes exacerbate these phenotypes. Both the double epiphycan/biglycan and the triple PRELP/fibromodulin/biglycan knockout mice exhibit premature osteoarthritis. ^