6 resultados para Gibbs Sampling

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess the accuracy and precision of airborne volatile organic compound (VOC) concentrations measured using passive air samplers (3M 3500 organic vapor monitors) over extended sampling durations (9 and 15 days). A total of forty-five organic vapor monitor samples were collected at a State of Texas air monitoring site during two different sampling periods (July/August and November 2008). The results of this study indicate that for most of the tested compounds, there was no significant difference between long-term (9 or 15 days) sample concentrations and the means of parallel consecutive short-term (3 days) sample concentrations. Biases of 9 or 15-day measurements vs. consecutive 3-day measurements showed considerable variability. Those compounds that had percent bias values of <10% are suggested as acceptable for long-term sampling (9 and 15 days). Of the twenty-one compounds examined, 10 compounds are classified as acceptable for long-term sampling; these include m,p-xylene, 1,2,4-trimethylbenzene, n-hexane, ethylbenzene, benzene, toluene, o-xylene, d-limonene, dimethylpentane and methyl tertbutyl ether. The ratio of sampling procedure variability relative to variability within days was approximately 1.89 for both sampling periods for the 3-day vs. 9-day comparisons and approximately 2.19 for both sampling periods for the 3-day vs. 15-day comparisons. Considerably higher concentrations of most VOCs were measured during the November sampling period compared to the July/August period. These differences may be a result of varying meteorological conditions during these two time periods, e.g., the differences in wind direction, and wind speed. Further studies are suggested to further evaluate the accuracy and precision of 3M 3500 organic vapor monitors over extended sampling durations. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was carried out at St. Luke's Episcopal Hospital to evaluate environmental contamination of Clostridium difficile in the infected patient rooms. Samples were collected from the high risk areas and were immediately cultured for the presence of Clostridium difficile . Lack of microbial typing prevented the study of molecular characterization of the Clostridium difficile isolates obtained led to a change in the study hypothesis. The study found a positivity of 10% among 50 Hospital rooms sampled for the presence of Clostridium difficile. The study provided data that led to recommendations that routine environmental sampling be carried in the hospital rooms in which patients with CDAD are housed and that effective environmental disinfection methods are used. The study also recommended molecular typing methods to allow characterization of the CD strains isolated from patients and environmental sampling to determine their type, similarity and origin.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In geographical epidemiology, maps of disease rates and disease risk provide a spatial perspective for researching disease etiology. For rare diseases or when the population base is small, the rate and risk estimates may be unstable. Empirical Bayesian (EB) methods have been used to spatially smooth the estimates by permitting an area estimate to "borrow strength" from its neighbors. Such EB methods include the use of a Gamma model, of a James-Stein estimator, and of a conditional autoregressive (CAR) process. A fully Bayesian analysis of the CAR process is proposed. One advantage of this fully Bayesian analysis is that it can be implemented simply by using repeated sampling from the posterior densities. Use of a Markov chain Monte Carlo technique such as Gibbs sampler was not necessary. Direct resampling from the posterior densities provides exact small sample inferences instead of the approximate asymptotic analyses of maximum likelihood methods (Clayton & Kaldor, 1987). Further, the proposed CAR model provides for covariates to be included in the model. A simulation demonstrates the effect of sample size on the fully Bayesian analysis of the CAR process. The methods are applied to lip cancer data from Scotland, and the results are compared. ^