3 resultados para Gettysburg, Battle of, Gettysburg, Pa., 1863.

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Polyethylene glycol-coated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Also, visualization of the (real-time) therapeutic effects of tissue plasminogen activator (t-PA) on pulmonary embolism (PE) was attempted. MATERIALS AND METHODS: Six rabbits (weight approximately 4 kg) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml; GE HealthCare, Princeton, NJ) at a dose of 1400 mg I per animal, and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mg I/animal). Subsequently, five animals were injected with 2 mg of t-PA and imaging continued for up to 4(1/2) hours. RESULTS: Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited nonuniform opacification and rapid clearance postinjection. Three of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10-57%, mean 42%). One animal showed no response to t-PA. CONCLUSIONS: Liposomal blood pool agents effectively identified acute PE without need for reinjection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of tumor suppressor function in the multistep process of carcinogenesis was studied in the human teratocarcinoma cell line PA-1. Early passage PA-1 cells ($<$P100) are preneoplastic while late passage ($>$P100) PA-1 cells are spontaneously transformed. Previous work demonstrated a causal role for the N-ras oncogene in the neoplastic transformation of this cell line and the gene was cloned. A clonal cell line established at passage 40 has been shown to suppress the neoplastic transformation potential of the PA-1 N-ras oncogene in gene transfer experiments. This phenotype has been termed SRT+ for suppression of ras transformation. A clonal cell line established at passage 63 is neoplastically transformed by the N-ras in similar gene transfer experiments and is regarded as srt$-$. Somatic cell hybrids were formed between the SRT+ cell and two different N-ras transformed srt$-$ cells. The results indicate that five of the seven independent hybrid clones, and all 14 subclones, failed to form tumors in the nude mouse tumor assay. Chromosomal analysis of rare neoplastic segregants which arose from suppressed hybrid populations demonstrate that the general loss of chromosomes correlates with the reemergence of neoplastic transformation. Karyotype analyses demonstrate a statistically correlative loss of chromosomes 1, 4, 19, and to a lesser extent 11, 14, and 16. DNA hybridization analysis demonstrates a single copy of the intact N-ras oncogene in parental cells, suppressed hybrids, and neoplastically transformed hybrids. These results indicate that functional ras transformation suppression is a trans-dominant trait which may be controlled by sequences residing on particular chromosomes in the human genome. Furthermore, the suppression of ras transformation results from a unique step in the multistep process of carcinogenesis that is different from the induction of immortality. Thus, the neoplastic process of the PA-1 cell line involves at least three steps: (1) induction of immortality, (2) activation of the N-ras oncogene, and (3) loss of tumor suppressor function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose. Brain lesions in acute ischemic stroke measured by imaging tools provide important clinical information for diagnosis and final infarct volume has been considered as a potential surrogate marker for clinical outcomes. Strong correlations have been found between lesion volume and clinical outcomes in the NINDS t-PA Stroke Trial but little has been published about lesion location and clinical outcomes. Studies of the National Institute of Neurological Disorders and Stroke (NINDS) t-PA Stroke Trial data found the direction of the t-PA treatment effect on a decrease in CT lesion volume was consistent with the observed clinical effects at 3 months, but measure of t-PA treatment benefits using CT lesion volumes showed a diminished statistical significance, as compared to using clinical scales. ^ Methods. We used the global test to evaluate the hypothesis that lesion locations were strongly associated with clinical outcomes within each treatment group at 3 months after stroke. The anatomic locations of CT scans were used for analysis. We also assessed the effect of t-PA on lesion location using a global statistical test. ^ Results. In the t-PA group, patients with frontal lesions had larger infarct volumes and worse NIHSS score at 3 months after stroke. The clinical status of patients with frontal lesions in t-PA group was less likely to be affected by lesion volume, as compared to those who had no frontal lesions in at 3 months. For patients within the placebo group, both brain stem and internal capsule locations were significantly associated with a lower odd of having favorable outcomes at 3 months. Using a global test we could not detect a significant effect of t-PA treatment on lesion location although differences between two treatment groups in the proportion of lesion findings in each location were found. ^ Conclusions. Frontal, brain stem, and internal capsule locations were significantly related to clinical status at 3 months after stroke onset. We detect no significant t-PA effect on all 9 locations although proportion of lesion findings in differed among locations between the two treatment groups.^