3 resultados para Genetic-statistic parameters
em DigitalCommons@The Texas Medical Center
Resumo:
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Resumo:
In order to better take advantage of the abundant results from large-scale genomic association studies, investigators are turning to a genetic risk score (GRS) method in order to combine the information from common modest-effect risk alleles into an efficient risk assessment statistic. The statistical properties of these GRSs are poorly understood. As a first step toward a better understanding of GRSs, a systematic analysis of recent investigations using a GRS was undertaken. GRS studies were searched in the areas of coronary heart disease (CHD), cancer, and other common diseases using bibliographic databases and by hand-searching reference lists and journals. Twenty-one independent case-control studies, cohort studies, and simulation studies (12 in CHD, 9 in other diseases) were identified. The underlying statistical assumptions of the GRS using the experience of the Framingham risk score were investigated. Improvements in the construction of a GRS guided by the concept of composite indicators are discussed. The GRS will be a promising risk assessment tool to improve prediction and diagnosis of common diseases.^