4 resultados para Generator interconnection group study
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVE: The primary objective of this trial was to evaluate the response rate for trimetrexate in conjunction with 5-FU and leucovorin (LV) (= TFL) in the treatment of advanced gastric cancer in a phase II, cooperative group setting. METHODS: Patients with locally advanced, unresectable, or metastatic adenocarcinoma of the stomach received trimetrexate 110 mg/m IV over 60 minutes day 1, followed by 5-FU 500 mg/m IV bolus and LV 200 mg/m IV over 60 minutes day 2, followed by oral LV 15 mg every 6 hours x 7 doses, all weekly for 6 weeks followed by 2 weeks of rest, continued until progression. RESULTS: Characteristics for 37 eligible patients: median age 63 (range: 23-83); male/female: 69% of 31%; performance status 0/1/2 15/20/1. The confirmed response rate was 19%, and median overall survival was 6 months. Two patients died as a result of therapy, 1 because of infection without significant neutropenia, and 1 due to perforation of a responding gastric lesion. Seventy-two percent experienced grades 3 and 4 toxicity, most commonly diarrhea, fatigue, and lymphopenia. CONCLUSIONS: This regimen achieves response rates comparable to other 5-FU-based regimens, when used in treatment of incurable gastric cancer. Toxicity appears manageable.
Resumo:
The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^