5 resultados para Gaussian mixture modeling
em DigitalCommons@The Texas Medical Center
Resumo:
This dissertation examined body mass index (BMI) growth trajectories and the effects of gender, ethnicity, dietary intake, and physical activity (PA) on BMI growth trajectories among 3rd to 12th graders (9-18 years of age). Growth curve model analysis was performed using data from The Child and Adolescent Trial for Cardiovascular Health (CATCH) study. The study population included 2909 students who were followed up from grades 3-12. The main outcome was BMI at grades 3, 4, 5, 8, and 12. ^ The results revealed that BMI growth differed across two distinct developmental periods of childhood and adolescence. Rate of BMI growth was faster in middle childhood (9-11 years old or 3rd - 5th grades) than in adolescence (11-18 years old or 5th - 12th grades). Students with higher BMI at 3rd grade (baseline) had faster rates of BMI growth. Three groups of students with distinct BMI growth trajectories were identified: high, average, and low. ^ Black and Hispanic children were more likely to be in the groups with higher baseline BMI and faster rates of BMI growth over time. The effects of gender or ethnicity on BMI growth differed across the three groups. The effects of ethnicity on BMI growth were weakened as the children aged. The effects of gender on BMI growth were attenuated in the groups with a large proportion of black and Hispanic children, i.e., “high” or “average” BMI trajectory group. After controlling for gender, ethnicity, and age at baseline, in the “high BMI trajectory”, rate of yearly BMI growth in middle childhood increased 0.102 for every 500 Kcals increase (p=0.049). No significant effects of percentage of energy from total fat and saturated fat on BMI growth were found. Baseline BMI increased 0.041 for every 30 minutes increased in moderate-to-vigorous PA (MVPA) in the “low BMI trajectory”, while Baseline BMI decreased 0.345 for every 30 minutes increased in vigorous PA (VPA) in the “high BMI trajectory”. ^ Childhood overweight and obesity interventions should start at the earliest possible ages, prior to 3rd grade and continue through grade school. Interventions should focus on all children, but specifically black and Hispanic children, who are more likely to be highest at-risk. Promoting VPA earlier in childhood is important for preventing overweight and obesity among children and adolescents. Interventions should target total energy intake, rather than only percentage of energy from total fat or saturated fat. ^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
Introduction: Obesity is an epidemic in the United States, especially among Hispanics and African-Americans. Studies of obesity and breast cancer risk and subtype have been conducted primarily in non-Hispanic whites. Obesity is inversely associated with premenopausal breast cancer, but both obesity and weight gain increase the risk of postmenopausal disease. Obesity has been associated with breast cancer subtype in many studies. Methods: To assess the association between changes in body mass index (BMI) over the lifetime, weight gain, and breast cancer in Mexican-American women, we conducted a case-control study using 149 cases and 330 age-matched controls. In a second study, we identified 212 African-American and 167 Mexican-American women with breast cancer in the ongoing ELLA Bi-National Breast Cancer Study, abstracted medical charts to classify tumors as ER+/PR+, HER2+, or ER-/PR-/HER2-, and assessed the association between lifetime changes in body mass index, weight gain, and breast cancer subtype. In both studies, growth mixture modeling was use to identify trajectories of change in BMI over the lifetime, and these trajectories were used as exposures in a logistic regression model to calculate odds ratios (OR). Results: There was no association between trajectories of change in BMI and breast cancer risk in Mexican-American women. In addition, BMI at ages 15 and 30 and at diagnosis was not associated with breast cancer. However, adult weight gain was inversely associated with breast cancer risk (per 5kg, OR=0.92, 95% CI: 0.85-0.99). The case-only analysis found no association between obesity at ages 15 and 30 and at diagnosis and breast cancer subtype. Further, there was no association between adult weight gain (defined as weight change from age 15 to time of diagnosis) and breast cancer subtype. Conclusions: Obesity was not associated with breast cancer risk in Mexican-American women, while adult weight gain reduced the risk independently of menopausal status. These results are contradictory of those in non-Hispanic white women and suggest that the etiology of breast cancer may differ by race/ethnicity. Further, obesity was not associated with breast cancer subtype in African-American and Mexican-American women, contrary to results in non-Hispanic white women. ^
Resumo:
Anticancer drugs typically are administered in the clinic in the form of mixtures, sometimes called combinations. Only in rare cases, however, are mixtures approved as drugs. Rather, research on mixtures tends to occur after single drugs have been approved. The goal of this research project was to develop modeling approaches that would encourage rational preclinical mixture design. To this end, a series of models were developed. First, several QSAR classification models were constructed to predict the cytotoxicity, oral clearance, and acute systemic toxicity of drugs. The QSAR models were applied to a set of over 115,000 natural compounds in order to identify promising ones for testing in mixtures. Second, an improved method was developed to assess synergistic, antagonistic, and additive effects between drugs in a mixture. This method, dubbed the MixLow method, is similar to the Median-Effect method, the de facto standard for assessing drug interactions. The primary difference between the two is that the MixLow method uses a nonlinear mixed-effects model to estimate parameters of concentration-effect curves, rather than an ordinary least squares procedure. Parameter estimators produced by the MixLow method were more precise than those produced by the Median-Effect Method, and coverage of Loewe index confidence intervals was superior. Third, a model was developed to predict drug interactions based on scores obtained from virtual docking experiments. This represents a novel approach for modeling drug mixtures and was more useful for the data modeled here than competing approaches. The model was applied to cytotoxicity data for 45 mixtures, each composed of up to 10 selected drugs. One drug, doxorubicin, was a standard chemotherapy agent and the others were well-known natural compounds including curcumin, EGCG, quercetin, and rhein. Predictions of synergism/antagonism were made for all possible fixed-ratio mixtures, cytotoxicities of the 10 best-scoring mixtures were tested, and drug interactions were assessed. Predicted and observed responses were highly correlated (r2 = 0.83). Results suggested that some mixtures allowed up to an 11-fold reduction of doxorubicin concentrations without sacrificing efficacy. Taken together, the models developed in this project present a general approach to rational design of mixtures during preclinical drug development. ^
Resumo:
Hodgkin's disease (HD) is a cancer of the lymphatic system. Survivors of HD face varieties of consequent adverse effects, in which secondary primary tumors (SPT) is one of the most serious consequences. This dissertation is aimed to model time-to-SPT in the presence of death and HD relapses during follow-up.^ The model is designed to handle a mixture phenomenon of SPT and the influence of death. Relapses of HD are adjusted as a covariate. Proportional hazards framework is used to define SPT intensity function, which includes an exponential term to estimate explanatory variables. Death as a competing risk is considered according to different scenarios, depending on which terminal event comes first. Newton-Raphson method is used to estimate the parameter estimates in the end.^ The proposed method is applied to a real data set containing a group of HD patients. Several risk factors for the development of SPT are identified and the findings are noteworthy in the development of healthcare guidelines that may lead to the early detection or prevention of SPT.^