9 resultados para Games not play

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs in the cytoplasm, and does not require nuclear-to-cytoplasmic shuttling of ATM. Using several cell culture systems including MCF7 breast carcinoma cells, SKOV3 ovarian cancer cells, and various lineages of mouse embryonic fibroblasts, we showed that once activated by reactive oxygen species (ROS), ATM signals to mTORC1 to induce autophagy via the LKB1-AMPK-TSC2 pathway. Targeting dysregulation of mTORC1 in Atm-deficient mice, which succumb to lymphomagenesis within 3-4 months of age with daily administration of rapamycin, could significantly extend survival and cause regression of tumors, suggesting that pharmacologically targeting this pathway has therapeutic implications in cancer. We also identified a second contrasting pathway for DNA damage-induced mTORC1 repression which does not require AMPK activation, but does require ATM and TSC2. Several potential mechanisms including mTOR localization and p53-mediated pathways were ruled out however we identified that TSC2 may be an additional cytoplasmic direct ATM substrate that is engaged in response to DNA damage specifically. Lastly, a study was performed to examine whether autophagy induced by ovarian cancer therapeutics (focusing on cisplatin, since paclitaxel does not induce autophagy in the SKOV3 cell line model we used) plays a role in resistance to therapy since autophagy can play both pro-survival mechanisms or be a mechanism of cell death. Using a genetic approach to knock-down Atg5 expression with shRNA in SKOV3 ovarian carcinoma cells, we compared the cytotoxicity of cisplatin in vector or Atg5 knock-down cells, and demonstrated that autophagy does not play any significant role in the response to cisplatin in this cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MuSVts110 is a conditionally defective mutant of Moloney murine sarcoma virus which undergoes a novel tmperature-dependent splice event at growth temperatures of 33$\sp\circ$C or lower. Relative to wild-type MuSV-124, MuSVts110 contains a 1487 base deletion spanning from the 3$\sp\prime$ end of the p30 gag coding region to just downstream of the first v-mos initiation codon. As a result, the gag and mos genes are fused out of frame and no v-mos protein is expressed. However, upon a shift to 33$\sp\circ$C or lower, a splice event occurs which removes 431 bases, realigns the gag and mos genes, and allows read-through translation of a P85gag-mos transforming protein. Interestingly, while the cryptic splice sites utilized in MuSVts110 are present and unaltered in MuSV-124, they are never used. Due to the 1487 base deletion, the MuSV-124 intron was reduced from 1919 to 431 bases suggesting that intron size might be involved in the activation of these cryptic splice sites in MuSVts110. Since the splicing phenotype of the MuSVts110 equivalent (TS32 DNA) which contains the identical 1487 base deletion introduced into otherwise wild-type MuSV-124 DNA, was indistinguishable from authentic MuSVts110, it was concluded that this deletion alone is responsible for activation of the cryptic splice sites used in MuSVts110. These results also confirmed that thermodependent splicing is an intrinsic property of the viral RNA and not due to some cellular defect. Furthermore, analysis of gag gene deletion and frameshift MuSVts110 mutants demonstrated that viral gag gene proteins do not play a role in regulation of MuSVts110 splicing. Instead, cis-acting viral sequences appear to mediate regulation of the splice event.^ Our initial observation that truncation of the MuSVts110 transcript, leaving only residual amounts of the flanking exon sequences, completely abolished splicing activity argued that exon sequences might participate in the regulation of the splice event.^ Analysis of exon sequence involvement has also identified cis-acting sequences important in the thermodependence of the splice event. Data suggest that regulation of the MuSVts110 splice event involves multiple interactions between specific intron and exon sequences and spliceosome components which together limit splicing activity to temperatures of 33$\sp\circ$C or lower while simultaneously restricting splicing to a maximum of 50% efficiency. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wilms tumor (WT) or nephroblastoma is a genetically heterogeneous pediatric renal tumor that accounts for 6–7% of all childhood cancers in the U.S. WT1, located at 11p13, is the sole WT gene cloned to date. Additional genomic regions containing genes that play a role in the development of Wilms tumor include 11p15, 7p, 16q, 1p, 17q and 19q. This heterogeneity has made it extremely difficult to develop an understanding of the pathways involved in the development of WT, even in the 5–20% of tumors that show mutations at the WT1 locus. My research addresses this gap in our current comprehension of the development of WT. ^ I have used two complementary approaches to extend the current understanding of molecular changes involved in the development of WT. In order to minimize complexities due to genetic heterogeneity, I confined my analysis to the WT1 pathway by assessing those genetically defined tumors that carry WT1 mutations. WT1 encodes a zinc finger transcription factor, and in vitro studies have identified many genes that are potentially regulated in vivo by WT1. However, there is very little in vivo data that suggests that they are transcriptionally regulated endogenously by WT1. In one approach I assessed the role of WT1 in the in vivo regulation of PDGFA and IGF2, two genes that are strong contenders for endogenous regulation by WT1. Using primary tissue samples, I found no correlation between the level of RNA expression of WT1 with either PDGFA or IGF2, suggesting that WT1 does not play a critical role in their expression in either normal kidney or WT. ^ In a parallel strategy, using differential display analysis I compared global gene expression in a subset of tumors with known homozygous inactivating WT1 mutations (WT1-tumors) to the gene expression in a panel of appropriate control tissues (fetal kidney, normal kidney, rhabdoid tumor and pediatric renal cell carcinoma). Transcripts that are aberrantly expressed in this subset of Wilms tumors are candidates for endogenous transcriptional regulation by WT1 as well as for potentially functioning in the development of WT. By this approach I identified several differentially expressed transcripts. I further characterized two of these transcripts, identifying a candidate WT gene in the process. I then performed a detailed analysis of this WT candidate gene, which maps to 7p. Future studies will shed more light on the role of these differentially expressed genes in WT. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose. To determine the usability of two video games to prevent type 2 diabetes and obesity among youth through analysis of data collected during alpha-testing. ^ Subjects. Ten children aged 9 to 12 were selected for three 2-hour alpha testing sessions.^ Methods. "Escape from Diab" and "Nanoswarm" were designed to change dietary and physical inactivity behaviors, based on a theoretical framework of mediating variables obtained from social cognitive theory, self-determination theory, elaboration likelihood model, and behavioral inoculation theory. Thirteen mini-games developed by the software company were divided into 3 groups based on completion date. Children tested 4-5 mini-games in each of three sessions. Observed game play was followed by a scripted interview. Results from observation forms and interview transcripts were tabulated and coded to determine usability. Suggestions for game modifications were delivered to the software design firm, and a follow-up table reports rationale for inclusion or exclusion of such modifications.^ Results. Participants were 50% frequent video game players and 20% non game-players. Most (60%) were female. The mean grade (indicating likeability as a subset of usability) across all games given by children was significantly greater than a neutral grade of 80% (89%, p < 0.01), indicating a positive likeability score. The games on average also received positive ratings for fun, helpfulness of instructions and length compared to neutral values (midpoint on likert scales) (all p < 0.01). Observation notes indicated that participants paid attention to the instructions, did not appear to have much difficulty with the games, and were "not frustrated", "not bored", "very engaged", "not fidgety" and "very calm" (all p < 0.01). The primary issues noted in observations and interviews were unclear instructions and unclear purpose of some games. Player suggestions primarily involved ways to make on screen cues more visible or noticeable, instructions more clear, and games more elaborate or difficult.^ Conclusions. The present study highlights the importance of alpha testing video game components for usability prior to completion to enhance usability and likeability. Results indicate that creating clear instructions, making peripheral screen cues more eye-catching or noticeable, and vigorously stating the purpose of the game to improve understandability are important elements. However, future interventions will each present unique materials and user-interfaces and should therefore also be thoroughly alpha-tested. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1998, Texas initiated a bold new statewide university admission policy aimed at increasing college access for traditionally underserved students in the state. House Bill 588 (known as the Texas Top 10 Percent Plan (TTPP)) guaranteed automatic admission to the college or university of their choice for all top performing students in Texas public high schools. Fourteen years after the plan’s implementation, we see great strides and complexities in understanding student outcomes as a result of the percent plan. However, the legal controversy over the percent plan both in Texas and other states incorporating similar yet distinctly motivated alternative admissions plans continues to play out from institutional decision boards to the highest court in the nation. This study seeks to add to that discussion by exploring two questions. Descriptively, what are the admission and enrollment patterns within racial/ethnic groups of percent plan eligible students, over time, for Texas elite, emergent elite, and remaining public institutions? Given that all eligible percent plan students may enter the institution of choice in Texas, does which type of institution a TTPP student chooses relate to their race/ethnicity? The descriptive story told by the admission and enrollment distributions of equally eligible TTPP students is a complex but compelling one. Fundamentally, it identifies that statistically different application and enrollment patterns exist for Hispanic and especially African American TTPP beneficiaries relative to their White and Asian American counterparts.