3 resultados para Gallbladder contraction
em DigitalCommons@The Texas Medical Center
Resumo:
Native peoples of the New World, including Amerindians and admixed Latin Americans such as Mexican-Americans, are highly susceptible to diseases of the gallbladder. These include cholesterol cholelithiasis (gallstones) and its complications, as well as cancer of the gallbladder. Although there is clearly some necessary dietary or other environmental risk factor involved, the pattern of disease prevalence is geographically associated with the distribution of genes of aboriginal Amerindian origin, and levels of risk generally correspond to the degree of Amerindian admixture. This pattern differs from that generally associated with Westernization, which suggests a gene-environment interaction, and that within an admixed population there is a subset whose risk is underestimated when admixture is ignored. The risk that an individual of a susceptible New World genotype will undergo a cholecystectomy by age 85 can approach 40% in Mexican-American females, and their risk of gallbladder cancer can reach several percent. These are heretofore unrecognized levels of risk, especially of the latter, because previous studies have not accounted for admixture or for the loss of at-risk individuals due to cholecystectomy. A genetic susceptibility may, thus, be as "carcinogenic" in New World peoples as any known major environmental exposure; yet, while the risk has a genetic basis, its expression as gallbladder cancer is so delayed as to lead only very rarely to multiply-affected families. Estimates in this paper are derived in part from two studies of Mexican-Americans in Starr County and Laredo, Texas.
Resumo:
Among Mexican Americans, the second largest minority group in the United States, the prevalence of gallbladder disease is markedly elevated. Previous data from both genetic admixture and family studies indicate that there is a genetic component to the occurrence of gallbladder disease in Mexican Americans. However, prior to this thesis no formal genetic analysis of gallbladder disease had been carried out nor had any contributing genes been identified.^ The results of complex segregation analysis in a sample of 232 Mexican American pedigrees documented the existence of a major gene having two alleles with age- and gender-specific effects influencing the occurrence of gallbladder disease. The estimated frequency of the allele increasing susceptibility was 0.39. The lifetime probabilities that an individual will be affected by gallbladder disease were 1.0, 0.54, and 0.00 for females of genotypes "AA", "Aa", and "aa", respectively, and 0.68, 0.30, and 0.00 for males, respectively. This analysis provided the first conclusive evidence for the existence of a common single gene having a large effect on the occurrence of gallbladder disease.^ Human cholesterol 7$\alpha$-hydroxylase is the rate-limiting enzyme in bile acid synthesis. The results of an association study in both a random sample and a matched case/control sample showed that there is a significant association between cholesterol 7$\alpha$-hydroxylase gene variation and the occurrence of gallbladder disease in Mexican Americans males but not in females. These data have implicated a specific gene, 7$\alpha$-hydroxylase, in the etiology of gallbladder disease in this population.^ Finally, I asked whether the inferred major gene from complex segregation analysis is genetically linked to the cholesterol 7$\alpha$-hydroxylase gene. Three pedigrees predicted to be informative for linkage analysis by virtue of supporting the major gene hypothesis and having parents with informative genotypes and multiple offspring were selected for this linkage analysis. In each of these pedigrees, the recombination fractions maximized at 0 with a positive, albeit low, LOD score. The results of this linkage analysis provide preliminary and suggestive evidence that the cholesterol 7$\alpha$-hydroxylase gene and the inferred gallbladder disease susceptibility gene are genetically linked. ^
Resumo:
Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^