2 resultados para GLUCONEOGENESIS
em DigitalCommons@The Texas Medical Center
Resumo:
The interaction between C. albicans and innate immune cells is a key determinant to disease progression. Transcriptional profiling showed that C. albicans responds to macrophage phagocytosis by inducing pathways required for alternative carbon metabolism (beta-oxidation, the glyoxylate cycle, and gluconeogenesis), suggesting these pathways are important for virulence of C. albicans. ^ We have shown that deleting key genes (FOX2, FBP1) in these pathways results in virulence defects in an in vivo mouse model for systemic infection. Like icl1Δ/Δ mutants, fbp1Δ/Δ mutants are severely attenuated and fox2Δ/Δ mutants are mildly but significantly attenuated, indicating that carbon starvation is a relevant stress in vivo. ^ However, fox2Δ/Δ mutants also had unexpected phenotypes on certain carbon sources, unlike the case in Saccharomyces cerevisiae, suggesting these pathways are regulated differently in C. albicans. To test this, we identified the C. albicans regulators of these pathways based on those from S. cerevisiae and Aspergillus nidulans. ^ C. albicans has a partly conserved framework, but lacks two regulators (Oaf1p, Pip2p) controlling peroxisome biogenesis and beta-oxidation genes in yeast. Instead, C. albicans has a homolog, CTF1, of the A. nidulans fatty acid catabolism regulators FarA and FarB. We have shown that CTF1 is needed for growth on oleate (like FarA and FarB), expression of beta-oxidation and glyoxylate cycle genes, and full virulence. No function for CTF1 has previously been identified in C. albicans. Our data demonstrate a role for alternative carbon metabolism in the virulence of C. albicans and suggest that the regulation of these pathways is a mixture of the filamentous fungi and budding yeast systems. ^
Resumo:
Candida albicans is the most important fungal pathogen of humans. Transcript profiling studies show that upon phagocytosis by macrophages, C. albicans undergoes a massive metabolic reorganization activating genes involved in alternative carbon metabolism, including the glyoxylate cycle, β-oxidation and gluconeogenesis. Mutations in key enzymes such as ICL1 (glyoxylate cycle) and FOX2 (fatty acid β-oxidation) revealed that alternative carbon metabolic pathways are required for full virulence in C. albicans. These studies indicate C. albicans uses non-preferred carbon sources allowing its adaptation to microenvironments were nutrients are scarce. It has become apparent that the regulatory networks required for regulation of alternative carbon metabolism in C. albicans are considerably different from the Saccharomyces cerevisiae paradigm and appear more analogous to the Aspergillus nidulans systems. Well-characterized transcription factors in S. cerevisiae have no apparent phenotype or are missing in C. albicans. CTF1 was found to be a single functional homolog of the A. nidulans FarA/FarB proteins, which are transcription factors required for fatty acid utilization. Both FOX2 and ICL1 were found to be part of a large CTF1 regulon. To increase our understanding of how CTF1 regulates its target genes, including whether regulation is direct or indirect, the FOX2 and ICL1 promoter regions were analyzed using a combination of bioinformatics and promoter deletion analysis. To begin characterizing the FOX2 and ICL1 promoters, 5’ rapid amplification of cDNA ends (5’RACE) was used to identify two transcriptional initiation sites in FOX2 and one in ICL1. GFP reporter assays show FOX2 and ICL1 are rapidly expressed in the presence of alternative carbon sources. Both FOX2 and ICL1 harbor the CCTCGG sequence known to be bound by the Far proteins, hence rendering the motif as a putative CTF1 DNA binding element. In this study, the CCTCGG sequence was found to be essential for FOX2 regulation. However, this motif does not appear to be equally important for the regulation of ICL1. This study supports the notion that although C. albicans has diverged from the paradigms of model fungi, C. albicans has made specific adaptations to its transcription-based regulatory network that may contribute to its metabolic flexibility.