3 resultados para GJ-876
em DigitalCommons@The Texas Medical Center
Resumo:
Background. Houston, Texas, once obtained all its drinking water from underground sources. However, in 1853, the city began supplementing its water from the surface source Lake Houston. This created differences in the exposure to disinfection byproducts (DBPs) in different parts of Houston. Trihalomethanes (THMs) are the most common DBP and are useful indicators of DBPs in treated drinking water. This study examines the relationship between THMs in chlorinated drinking water and the incidence of bladder cancer in Houston. ^ Methods. Individual bladder cancer deaths, from 1975 to 2004, were assigned to four surface water exposure areas in Houston utilizing census tracts—area A used groundwater the longest, area B used treated lake water the longest, area C used treated lake water the second longest, and area D used a combination of groundwater and treated lake water. Within each surface water exposure area mortality rates were calculated in 5 year intervals by four race-gender categories. Linear regression models were fitted to the bladder cancer mortality rates over the entire period of available data (1990–2004). ^ Results. A decrease in bladder cancer mortality was observed amongst white males in area B (p = 0.030), white females in area A (p = 0.008), non-white males in area D (p = 0.003), and non-white females in areas A and B (p = 0.002 & 0.001). Bladder cancer mortality differed by race-gender and time (p ≤ 0.001 & p ≤ 0.001), but not by surface water exposure area (p = 0.876). ^ Conclusion. The relationship between bladder cancer mortality and the four surface water exposure areas (signifying THM exposure) was insignificant. This result could be attributable to Houston controlling for THMs starting in the early 1980’s by using chloramine as a secondary disinfectant in the drinking water purification process.^
Resumo:
Context. Alzheimer’s disease is a major source of morbidity and mortality in aging societies. Preventive measures, such as increasing cardiorespiratory fitness, to reduce the risk of Alzheimer’s disease mortality have not been sufficiently examined.^ Objective. To examine the association between levels of cardiorespiratory fitness and Alzheimer’s disease mortality.^ Design, Setting, and Patients. A prospective cohort study of 53,911 men and 18,876 women (mean age, 51.4 [SD, 10.0] years; range 20-88) enrolled in the Cooper Center Longitudinal Study who completed a baseline health examination during 1970-2006. The primary exposure, cardiorespiratory fitness, was assessed via a maximal exercise test. Fitness was categorized according to age- and sex-specific tertiles based on the participants’ distribution of maximal treadmill exercise test duration, in metabolic equivalent tasks (METs). The main outcome measure was Alzheimer’s disease mortality, defined as the underlying or contributing cause of death using the National Death Index and death certificates through December 31, 2006.^ Results. There were 175 Alzheimer’s disease deaths during a mean follow up of 37 years and 1,309,170 person-years of exposure. Women in the high fitness category had a 70% reduction in risk of Alzheimer’s mortality compared to women in the low fitness category (HR=0.3; 95% CI, 0.1-0.8; P=.02), while adjusting for potential confounders. Similarly, women in the moderate fitness category had a 70% reduction in risk for AD mortality compared to women in the low fit category (HR=0.3; 95% CI, 0.1-0.7; P=.005). Among men, the relationship between fitness level and AD mortality risk was examined but none were of statistical significance. The adjusted comparison of men in the high fitness category to low fit men yielded an HR of 0.9 (95% CI, 0.6-1.5; P=.79), while moderately fit men compared to low fit men yielded an HR of 1.3 (95% CI, 0.9-1.9; P=.21).^ Conclusions. Higher levels of cardiorespiratory fitness were associated with decreased risk of AD mortality, in women. No statistically significant association was found among men. Physical fitness may be an important protective factor against Alzheimer’s disease death in women, further supporting its clinical and public health values.^
Resumo:
The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^