6 resultados para GAG PROTEINS
em DigitalCommons@The Texas Medical Center
Resumo:
The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^
Resumo:
The purpose of this research was to elucidate the mechanism of assembly of retroviruses, specifically of murine leukemia virus, as studied through the treatment of virus-infected cells with interferon and through the use of temperature sensitive (ts) mutants. Our studies have shown a rapid and specific association of Rauscher murine leukemia virus (R-MuLV) precursor polyprotein Pr65('gag) with cytoskeletal elements in infected mouse fibroblasts. The Pr65('gag) associated with Nonidet P-40 (NP40)-insoluble cytoskeletal structures appeared to be subphosphorylated in comparison to NP40-soluble Pr65('gag). The association of Pr65('gag) with skeletal elements could be disrupted by extraction of the cytoskeleton with sodium deoxycholate, an ionic detergent. Both the skeleton-associated Pr65('gag) and its NP40-soluble counterpart were labeled with {('3)H}-palmitate, indicating their probable association with lipids presumably in the plasma membrane. Pr65('gag) molecules bound to skeletal elements in the infected cell appeared to be more stable to proteolytic processing than NP40-soluble Pr65('gag). Our studies with certain ts mutants of murine leukemia virus, defective in virus assembly, including Mo-MuLV ts3 and R-MuLV ts17, ts24, ts25 and ts26, have shown that virions released at 39(DEGREES)C (nonpermissive temperature) had high levels of uncleaved Pr65('gag) relative to that seen in virions released at 33(DEGREES)C (permissive temperature). Examination of cell extracts revealed that Pr54('gag) was more stable to processing at 39(DEGREES)C than at 33(DEGREES)C, whereas the 'env' and glycosylated 'gag' proteins were processed to the same extent at both temperatures. Detergent extraction of pulse-labeled cells to generate an NP40-insoluble cytoskeleton-enriched fraction showed that in ts3-, ts17- and ts24-infected cells, Pr65('gag) accumulated in the cytoskeleton-enriched fraction. In contrast, cells infected with ts25 or ts26 showed no preferential localization of Pr65('gag) in the cytoskeleton in a short pulse, but instead, Pr65('gag) accumulated in both the NP40-soluble and -insoluble fractions during a chase-incubation. The association of Pr65('gag) with cytoskeletal elements in the cell was neither increased nor decreased by blocking virus assembly and release with interferon. Based on these and other results, we have proposed a model for the active role of cytoskeleton-associated Pr65('gag) in retrovirus assembly.^
Resumo:
The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^
Resumo:
By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^
Resumo:
Two murine leukemia viruses (MuLVs), Rauscher (R-MuLV) and Moloney (Mo-MuLV) MuLVs, were studied to identify the biosynthetic pathways leading to the generation of mature virion proteins. Emphasis was placed on the examination of the clone 1 Mo-MuLV infected cell system.^ At least three genetic loci vital to virion replication exist on the MuLV genome. The 'gag' gene encodes information for the virion core proteins. The 'pol' gene specifies information for the RNA-dependent-DNA-polymerase (pol), or reverse transcriptase (RT). The 'env' gene contains information for the virion envelope proteins.^ MuLV specified proteins were synthesized by way of precursor polyproteins, which were processed to yield mature virion proteins. Pulse-chase kinetic studies, radioimmunoprecipitation, and peptide mapping were the techniques used to identify and characterize the MuLV viral precursor polyproteins and mature virion proteins.^ The 'gag' gene of Mo-MuLV coded for two primary gene products. One 'gag' gene product was found to be a polyprotein of 65,000 daltons M(,r) (Pr65('gag)). Pr65('gag) contained the antigenic and structural determinants of all four viral core proteins--p30, p15, pp12 and p10. Pr65('gag) was the major intracellular precursor polyprotein in the generation of mature viral core proteins. The second 'gag' gene product was a glycosylated gene product (gPr('gag)). An 85,000 dalton M(,r) polyprotein (gPr85('gag)) and an 80,000 dalton M(,r) (gPr80('gag)) polyprotein were the products of the 'gag' genes of Mo-MuLV and R-MuLV, respectively. gPr('gag) contained the antigenic and structural determinants of the four virion core proteins. In addition, gPr('gag) contained peptide information over and above that of Pr65('gag). Pulse-chase kinetic studies in the presence of tunicamycin revealed a separate processing pathway of gPr('gag) that did not seem to involve the generation of mature virion core proteins. Subglycosylated gPr('gag) was found to have a molecular weight of 75,000 daltons (Pr75('gag)) for both Mo-MuLV and R-MuLV.^ The Mo-MuLV 'pol' gene product was initially synthesized as a read-through 'gag-pol' intracellular polyprotein containing both antigenic and structural determinants of both the 'gag' and 'pol' genes. This read-through polyprotein was found to be a closely spaced doublet of two similarly sized proteins at 220-200,000 daltons M(,r) (Pr220/200('gag-pol)). Pulse-chase kinetic studies revealed processing of Pr220/200('gag-pol) to unstable intermediate intracellular proteins of 145,000 (Pr145('pol)), 135,000 (Pr135('pol)), and 125,000 (Pr125('pol)) daltons M(,r). Further chase incubations demonstrated the appearance of an 80,000 dalton M(,r) protein, which represented the mature polymerase (p80('pol)).^ The primary intracellular Mo-MuLV 'env' gene product was found to be a glycosylated polyprotein of 83,000 daltons M(,r) (gPr83('env)). gPr83('env) contained the antigenic and structural determinants of both mature virion envelope proteins, gp70 and p15E. In addition, gPr83('env) contained unique peptide sequences not present in either gp70 or p15E. The subglycosylated form of gPr83('env) had a molecular weight of 62,000 daltons (Pr62('env)).^ Virion core proteins of R-MuLV and Mo-MuLV were examined. Structural homology was observed betwen p30s and p10s. Significant structural non-homology was demonstrated between p15s and pp12s. ^
Resumo:
Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^