16 resultados para G-proteins

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neuropeptide somatostatin is a widely distributed general inhibitor of endocrine, exocrine, gastrointestinal and neural functions. The biological actions of somatostatin are initiated by interaction with high affinity, plasma membrane somatostatin receptors (sst receptors). Five sst receptor subtypes have been cloned and sequence analysis shows they are all members of the G protein coupled receptor superfamily. The G proteins play a pivotal role in sst receptor signal transduction and the specificity of somatostatin receptor-G protein coupling defines the possible range of cellular responses. However, the data for endogenous sst receptor and G protein coupling is very limited, and even when it is available, the sst receptor subtypes involved in G protein coupling and signal transduction are unknown due to the expression of multiple sst receptor subtypes in target cell lines or tissues of somatostatin.^ In an effort to characterize each individual sst receptor subtypes, antisera against unique C-terminal regions of different sst receptor subtypes have been developed in our lab. In this report, antisera made against the sst1, sst2A and sst4 receptors are characterized. They are highly specific to their corresponding receptors and efficiently immunoprecipitate the sst receptors. Using these antibodies, the cell lines expressing these sst receptor subtypes were identified with both immunoprecipitation and Western blot methods. The development of sst receptor subtype specific antibodies make it possible to determine the specificity of the sst receptor subtype and G protein coupling in target cells or tissues expressing multiple sst receptors, two questions were addressed by this thesis: (1) whether different cellular environments affect receptor subtype and G protein coupling; (2) whether different sst receptors couple to different G proteins in similar cellular environments.^ Taken together our findings, both sst1 and sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells, G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in GH$\sb4$C$\sb1$ cells. Further, sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in AR4-2J cells while sst4 receptors couple with G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells. Therefore, the G protein coupling of the same sst receptors in different cell lines is basically similar in that they all couple with multiple $\alpha$-subunits of the G$\rm \sb{i}$ proteins, suggesting cellular environment has little effect on receptor and G protein coupling. Moreover, different sst receptors have similar G protein coupling specificities in the same cell line, suggesting components other than receptor and G$\alpha$ subunits in the signal transduction pathways may contribute to specific functions of each sst receptor subtype. This series of experiments represent a novel approach in dissecting signal transduction pathways and may have general application in the field. Furthermore, this is the first systematic study of sst receptor subtype and G protein $\alpha$-subunit interaction in both transfected cells and in normal cell lines. The information generated will be very useful in our understanding of sst receptor signal transduction pathways and in directing future sst receptor research. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of protein kinase C (PKC) causes multiple effects on adenylyl cyclase (AC), (i) an inhibition of (hormone) receptor/G$\sb{\rm s}$ coupling, consistent with PKC modification of the receptor and (ii) a postreceptor sensitization consistent with a PKC-mediated modification of the stimulatory (G$\sb{\rm s}$) or inhibitory (G$\sb{\rm i}$) G-proteins or the catalyst (C) of AC. In L cells expressing the wild-type beta-adrenergic receptor ($\beta$AR) 4-$\beta$ phorbol 12-myristate-13-acetate (PMA) caused 2-3-fold increases in the K$\sb{\rm act}$ and V$\sb{\rm max}$ for epinephrine-stimulated AC activity and an attenuation of GTP-mediated inhibition of AC. Deletion of a concensus site for PKC phosphorylation (amino acids 259-262) from the $\beta$AR eliminated the PMA-induced increase in the K$\sb{\rm act}$, but had no effect on the other actions of PMA. PMA also increased the K$\sb{\rm act}$ and V$\sb{\rm max}$ for prostaglandin E$\sb1$ (PGE$\sb1$)-stimulated AC and the V$\sb{\rm max}$ for forskolin-stimulated AC. Maximal PMA-induced sensitizations were observed when AC was assayed in the presence of 10 $\mu$M GTP and 0.3 mM (Mg$\sp{++}$).^ Liao et al. (J. Biol. Chem. 265:11273-11284 (1990)) have shown that the P$\sb2$ purinergic receptor agonist ATP stimulates hydrolysis of 4,5 inositol bisphosphate (PIP$\sb2$) by phospholipase C (PLC) in L cells. To determine if agonists that stimulate PLC and PMA had similar effects on AC function we compared the effects of ATP and PMA. ATP caused a rapid 50-150% sensitization of PGE$\sb1$-, epinephrine-, and forskolin-stimulated AC activity with an EC$\sb{50}$ of 3 $\mu$M ATP. The sensitization was similar (i.e. Mg$\sp{++}$ and GTP sensitivity) to that caused by 10 nM PMA. However, unlike PMA ATP did not affect the K$\sb{\rm act}$ for hormone-stimulated AC and its effects were unaltered by down-regulation of PKCs following long term PMA treatment. Our results demonstrate that a PKC concensus site in the $\beta$AR, is required for the PMA-induced decrease in receptor/G$\sb{\rm s}$ coupling. Our data also indicate that activation of P$\sb2$ purinergic receptors by ATP may be important in the sensitization of AC in L cells. The mechanism behind this effect remains to be determined. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand the mechanisms of how the human prostacyclin receptor (1P) mediates vasodilation and platelet anti-aggregation through Gs protein coupling, a strategy integrating multiple approaches including high resolution NMR experiments, synthetic peptide, fluorescence spectroscopy, molecular modeling, and recombinant protein was developed and used to characterize the structure/function relationship of important segments and residues of the IP receptor and the α-subunit of the Gs protein (Gαs). The first (iLP1) and third (iLP3) intracellular loops of the IP receptor, as well as the Gαs C-terminal domain, relevant to the Gs-mediated IP receptor signaling, were first identified by observation of the effects of the mini gene-expressed corresponding protein segments in HEK293 cells which co-expressed the receptor and Gαs. Evidence of the IP iLP1 domain interacted with the Gαs C-terminal domain was observed by fluorescence and NMR spectroscopic studies using a constrained synthetic peptide, which mimicked the IP iLP1 domain, and the synthetic peptide, which mimicked Gαs C-terminal domain. The solution structural models and the peptide-peptide interaction of the two synthetic protein segments were determined by high resolution NMR spectroscopy. The important residues in the corresponding domains of the IP receptor and the Gαs predicted by NMR chemical shift mapping were used to guide the identification of their protein-protein interaction in cells. A profile of the residues Arg42 - Ala48 of the IP iLP1 domain and the three residues Glu392 ∼ Leu394 of the Gαs C-terminal domain involved in the IP/Gs protein coupling were confirmed by recombinant proteins. The data revealed an intriguing speculation on the mechanisms of how the signal of the ligand-activated IP receptor is transmitted to the Gs protein in regulating vascular functions and homeostasis, and also provided substantial insights into other prostanoid receptor signaling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to regulate cell cycle progression is one of the differences that separates normal from tumor cells. A protein, which is frequently mutated or deleted in a majority of tumor cells, is the retinoblastoma protein (pRb). Previously, we reported that normal cells, which have a wild-type Rb pathway, can be reversibly arrested in the G1 phase of the cell cycle by staurosporine (ST), while tumor cells were unaffected by this treatment. As a result, ST may be used to protect normal cells against the toxic affects of chemotherapy. Here we set out to determine the mechanism(s) by which ST can mediate a reversible G1 arrest in pRb positive cells. To this end, we used an isogenic cell model system of normal human mammary epithelial cells (HMEC) with either intact pRb+ (p53-) or p53+ (pRb-) treated with ST. Our results show that pRb+ cells treated with low concentrations of ST, arrested in the G1 phase of the cell cycle; however, in pRb - cells there was no response. This was verified as a true G 1 arrest in pRb+ cells by two different methods for monitoring cell cycle kinetics and in two additional model systems for Rb (i.e. pRb -/- mouse embryo fibroblasts, and downregulation of RB with siRNA). Our results indicated that ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4 and CDK2 activities and up-regulation of p21 protein. Further assessment of this pathway revealed the novel finding that Chk1 expression and activity were required for the Rb-dependent, ST-mediated G1 arrest. In fact, overexpression of Chk1 facilitated recovery from ST-mediated G1 arrest, an effect only observed in RB+ cells. Collectively, our data suggest pRb is able to cooperate with Chk1 to mediate a G1 arrest in pRb+ cells, but not in pRb- cells. The elucidation of this pathway can help identify novel agents that can be used to protect cancer patients against the debilitating affects of chemotherapy, by targeting only the normal proliferating cells in the body that are otherwise destroyed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of a triple helix resulting from oligonucleotide binding to the DNA double helix offers new possibilities to control gene expression at the transcriptional level. Purine-motif triplexes can be formed under physiological pH. Nevertheless, this formation was inhibited by certain monovalent cations during the association but not during dissociation. Since triplexes are very stable, it was possible to assemble them in the absence of KCl and have them survive throughout the course of an in vitro transcription reaction. As for the design of a better triplex-forming oligonucleotide, 12 nucleotides in length afforded the highest binding affinity. G/T-rich oligonucleotides can be very polymorphic in solution. The conditions for forming purine-motif triplexes, duplexes or G-quartets were determined. Understanding these parameters will be important for the practical use of G-rich oligonucleotides in the development of DNA aptamers where the structure of the oligonucleotide is paramount in dictating its function. Finally, purine-motif triplexes were demonstrated to significantly inhibit gene transcription in vitro. The optimal effect on this process was dependent on the location of triplexes within the promoter, i.e., whether upstream or proximally downstream of the transcription start site. The mechanism for the inhibition of transcription appeared to be interference with initiation through preventing engagement by RNA polymerase. This finding is revolutionary when compared to the conventional model where triplexes inhibit transcription only by occluding binding by trans-acting proteins. Our findings broaden the utility of triplexes and support a strategy for antigene therapy by triplexes. ^