1 resultado para Funk

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vitro conversion of phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG) involves at least two membrane bound phosphatases in Escherichia coli. The genes encoding these two PGP-phosphatases, pgpA and pgpB, are unique and map distally to min 10 and min 28 respectively. Although point mutations in either or both of these genes decrease the level of PGP phosphatase as assayed in vitro, and also result in a minor accumulation of the precursor, PGP, in the membrane, the mutations have no significant effect on the level of PG in the cell (Icho, T. and Raetz, C. R. H. (1983) J. Bact. 153, 722-730). This dilemma suggests that there remains a significant level of phosphatase activity in the pgpAand pgpB mutants which is sufficient to support normal PG metabolism in vivo, but it is not clear whether this activity is a consequence of a separate phosphatase, or due to "leakiness" of the point lesions in these genes. To address this problem, we have constructed null alleles of the two phosphatase genes, and characterized the effects of these mutations on PG metabolism. Our findings demonstrate that neither the pgpA nor the pgpB phosphatase gene is essential for cell viability. In addition, similar to the pgpA$\sp{-}$, pgpB$\sp{-}$ double point mutant, a strain containing both of the corresponding null alleles still retains enough phosphatase activity to maintain normal levels of PG in the membrane. These data demonstrate that there exists at least a third gene encoding a major biosynthetic phosphatase which is responsible for the in vivo conversion of PGP to PG, and calls into question the actual roles of the pgpA and the pgpB gene products in PG metabolism and cell function. ^