1 resultado para Fungal Protein

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^