2 resultados para Frequency-dependent selection
em DigitalCommons@The Texas Medical Center
Resumo:
In light of the new healthcare regulations, hospitals are increasingly reevaluating their IT integration strategies to meet expanded healthcare information exchange requirements. Nevertheless, hospital executives do not have all the information they need to differentiate between the available strategies and recognize what may better fit their organizational needs. ^ In the interest of providing the desired information, this study explored the relationships between hospital financial performance, integration strategy selection, and strategy change. The integration strategies examined – applied as binary logistic regression dependent variables and in the order from most to least integrated – were Single-Vendor (SV), Best-of-Suite (BoS), and Best-of-Breed (BoB). In addition, the financial measurements adopted as independent variables for the models were two administrative labor efficiency and six industry standard financial ratios designed to provide a broad proxy of hospital financial performance. Furthermore, descriptive statistical analyses were carried out to evaluate recent trends in hospital integration strategy change. Overall six research questions were proposed for this study. ^ The first research question sought to answer if financial performance was related to the selection of integration strategies. The next questions, however, explored whether hospitals were more likely to change strategies or remain the same when there was no external stimulus to change, and if they did change, they would prefer strategies closer to the existing ones. These were followed by a question that inquired if financial performance was also related to strategy change. Nevertheless, rounding up the questions, the last two probed if the new Health Information Technology for Economic and Clinical Health (HITECH) Act had any impact on the frequency and direction of strategy change. ^ The results confirmed that financial performance is related to both IT integration strategy selection and strategy change, while concurred with prior studies that suggested hospital and environmental characteristics are associated factors as well. Specifically this study noted that the most integrated SV strategy is related to increased administrative labor efficiency and the hybrid BoS strategy is associated with improved financial health (based on operating margin and equity financing ratios). On the other hand, no financial indicators were found to be related to the least integrated BoB strategy, except for short-term liquidity (current ratio) when involving strategy change. ^ Ultimately, this study concluded that when making IT integration strategy decisions hospitals closely follow the resource dependence view of minimizing uncertainty. As each integration strategy may favor certain organizational characteristics, hospitals traditionally preferred not to make strategy changes and when they did, they selected strategies that were more closely related to the existing ones. However, as new regulations further heighten revenue uncertainty while require increased information integration, moving forward, as evidence already suggests a growing trend of organizations shifting towards more integrated strategies, hospitals may be more limited in their strategy selection choices.^
Resumo:
Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^