12 resultados para Francesco I, King of the Two Sicilies, 1777-1830.

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of my project is to examine the mechanisms of cell lineage-specific transcriptional regulation of the two type I collagen genes by characterizing critical cis-acting elements and trans-acting factors. I hypothesize that the transcription factors that are involved in the cell lineage-specific expression of these genes may have a larger essential role in cell lineage commitment and differentiation. I first examined the proximal promoters of the proα1(I) and the proα2(I) collagen genes for cell type-specific DNA-protein interactions, using in vitro DNaseI and in vivo DMS footprinting. These experiments demonstrated that the cis-acting elements in these promoters are accessible to ubiquitous DNA-binding proteins in fibroblasts that express these genes, but not in other cells that do not express these genes. I speculate that in type I collagen-expressing cells, cell type-specific enhancer elements facilitate binding of ubiquitous proteins to the proximal promoters of these genes. Subsequently, examination of the upstream promoter of the proα(I) collagen gene by transgenic mice experiments delineated a 117 bp sequence (-1656 to -1540 bp) as the minimum element required for osteoblast-specific expression. This 117 bp element contained two segments that appeared to have different functions: (1) the A-segment, which was necessary to obtain osteoblast-specific expression and (2) the C-segment, which was dispensable for osteoblast-specific expression, but was necessary to obtain high-level expression. In experiments to identify trans-acting factors that bind to the 117 bp element, I have demonstrated that the cell lineage-restricted homeodomain proteins, Dlx2, Dlx5 and mHOX, bound to the A-segment and that the ubiquitous transcription factor, Sp1, bound to the C-segment of this element. These results suggested a model where the binding of cell lineage-restricted proteins to the A-segment and of ubiquitous proteins to the C-segment of the 117 bp element of the proα1 (I) collagen gene activated this gene in osteoblasts. These results, combined with additional evidence that Dlx2, Dlx5 and mHOX are probably involved in osteoblast differentiation, support my hypothesis that the transcription factors involved in osteoblast-specific expression of type I collagen genes may have essential role in osteoblast lineage commitment and differentiation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aniridia (AN) is a congenital, panocular disorder of the eye characterized by the complete or partial absence of the iris. The disease can occur in both the sporadic and familial forms which, in the latter case, is inherited as an autosomal dominant trait with high penetrance. The objective of this study was to isolate and characterize the genes involved in AN and Sey, and thereby to gain a better understanding of the molecular basis of the two disorders.^ Using a positional cloning strategy, I have approached and cloned from the AN locus in human chromosomal band 11p13 a cDNA that is deleted in two patients with AN. The deletions in these patients overlap by about 70 kb and encompass the 3$\sp\prime$ end of the cDNA. This cDNA detects a 2.7 kb mRNA encoded by a transcription unit estimated to span approximately 50 kb of genomic DNA. The message is specifically expressed in all tissues affected in all forms of AN, namely within the presumptive iris, lens, neuroretina, the superficial layers of the cornea, the olfactory bulbs, and the cerebellum. Sequence analysis of the AN cDNA revealed a number of motifs characteristic of certain transcription factors. Chief among these are the presence of the paired domain, the homeodomain, and a carboxy-terminal domain rich in serine, threonine and proline residues. The overall structure shows high homology to the Drosophila segmentation gene paired and members of the murine Pax family of developmental control genes.^ Utilizing a conserved human genomic DNA sequence as probe, I was able to isolate an embryonic murine cDNA which is over 92% homologous in nucleotide sequence and virtually identical at the amino acid level to the human AN cDNA. The expression pattern of the murine gene is the same as that in man, supporting the conclusion that it probably corresponds to the Sey gene. Its specific expression in the neuroectodermal component of the eye, in glioblastomas, but not in the neural crest-derived PC12 pheochromocytoma cell line, suggests that a defect in neuroectodermal rather mesodermal development might be the common etiological factor underlying AN and Sey. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A child with a birth defect places physical, financial and emotional stress upon the family. The purpose of this study was to assess the impact of a mildly handicapped child on the family's coping abilities.^ Two groups, 101 mothers of children with birth defects and 107 mothers of intact children, completed the Holroyd Questionnaire on Resources and Stress and the Luborsky Social Assets Scale. From these groups, 86 pairs were matched on four factors: the age (two to eight years) and sex of the study child and the mother's education and marital status.^ The children with birth defects had completed the diagnostic evaluation at the Meyer Center for Developmental Pediatrics, Texas Children's Hospital. Children with severe defects were excluded. The mean I.Q of the group was 88, s.d. 17; 17 children were mildly retarded and 35 had an I.Q. of 100 or above; areas of dysfunction included motor abnormalities, behavior disturbance, speech problems, and sensory impairments.^ The expected direction and statistically significant differences were obtained from the data for the matched pairs on the Q.R.S. scales. The mothers of children with a birth defect reported poor health, a negative attitude toward the child, being over-protective, financial problems and feeling a lack of social support and family integration. They perceived the child as socially obtrusive, limited as to occupational opportunities, and as having a difficult personality.^ The functioning levels of the handicapped children contributed to the respondent's problems. The child with behavior and speech problems but adequate intelligence was a situation which resulted in a poor health/mood of the mother. The mother's pessimism was related to the child's low intelligence.^ The social assets of the respondents with intact children were significantly higher than those of respondents of handicapped children. There was no relationship between the total social assets score and the scores on the Q.R.S. for mothers of handicapped children. These mothers did report poorer physical conditions, more smoking, and quarreling of their parents as they grew up. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 6,600 people die from acute myelogenous leukemia (AML) on an annual basis. During the past 10 to 15 years, there has been gradual overall improvements in the therapy of this disease, yet the majority of patients with AML succumb to this disease. In an attempt to improve current therapeutic strategies for AML, we became interested in a commercially available drug, dexrazoxane, which protects against anthracycline-induced cardiotoxicity. We have investigated dexrazoxane's (DEX) effects on different tissue types in an effort to determine its unique mechanism of action. Colony forming assays were used to evaluate stem-cell renewal of myeloid cells in vitro and median effect analysis was used to evaluate antagonism, synergism, or additivity. The anthracyclines, doxorubicin, daunorubicin, and idarubicin were individually combined with DEX in leukemic myeloid models to determine if the combination of the two drugs resulted in a synergistic, additive or antagonistic effect. Etoposide and cytosine arabinoside were also evaluated in combination with DEX using the same in vitro model and evaluated similarly. ^ Dexrazoxane in combination with any of the anthracyclines was schedule dependent. The combination of DEX and anthracycline resulted in a greater antitumor effect than anthracycline alone except for DEX administered 24 hours before doxorubicin or daunorubicin. These data were corroborated through median effect analysis. Etoposide in combination with dexrazoxane was synergistic for all combinations, and the combination of cytosine arabinoside and DEX was schedule dependent. In contrast, using an in vivo gastrointestinal model, DEX in combination with doxorubicin was antagonistic for almost all of the ratios used, except for the highest. A Withers' assay was used to evaluate toxicity on jejunal crypt cells. No effect was apparent for the combination of idarubicin and DEX, however, as seen with RZ, DEX in addition to radiation greatly potentiated the cytotoxic effects of radiation on crypts. These paradoxical effects of dexrazoxane were initially enigmatic, but after additional investigation, we propose a model that explains our findings. We conclude that DEX in combination with anthracyclines produces an additive to synergistic antileukemic response and may have therapeutic potential clinically. Additionally, DEX protects the gastrointestinal tract from doxorubicin toxicity, which could have clinical implications for the administration of greater doses of doxorubicin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal humans have one red and at least one green visual pigment genes. These genes are tightly linked as tandem repeats on the X chromosome and each of them has six exons. There is only one X-linked visual pigment gene in New World monkeys (NWMs) but the locus has three polymorphic alleles encoding red, yellow and green visual pigments, respectively. The spectral properties of the squirrel monkey and the marmoset (both NWMs) have been studied and partial sequences of the three alleles are available. To study the evolutionary history of these X-linked opsin genes in humans and NWMs, coding and intron sequences of the three squirrel monkey alleles and the three marmoset alleles were amplified by PCR followed by subcloning and sequencing. Introns 2 and 4 of the human red and green pigment genes were also sequenced. The results obtained are as follows: (1) The sequences of introns 2 and 4 of the human red and green opsin genes are significantly more similar between the two genes than are coding sequences, contrary to the usual situation where coding regions are better conserved in evolution than are introns. The high similarities in the two introns are probably due to recent gene conversion events during evolution of the human lineage. (2) Phylogenetic analysis of both intron and exon sequences indicates that the phylogenetic tree of the available primate opsin genes is the same as the species tree. The two human genes were derived from a gene duplication event after the divergence of the human and NWM lineages. The three alleles in each of the two NWM species diverged after the split of the two NWMs but have persisted in the population for at least 5 million years. (3) Allelic gene conversion might have occurred between the three squirrel monkey alleles. (4) A model of additive effect of hydroxyl-bearing amino acids on spectral tuning is proposed by treating some unknown variables as groups. Under the assumption that some residues have no effect, it is found that at least five amino acid residues, at positions 178 (3 nm), 180 (5 nm), 230 ($-$4 nm), 277 (9 nm) and 285 (13 nm), have linear spectral tuning effects. (5) Adaptive evolution of the opsin genes to different spectral peaks was observed at four residues that are important for spectral tuning. ^