7 resultados para Formation of certification and selection committee
em DigitalCommons@The Texas Medical Center
Resumo:
Galactosyltransferase (GalTase) is localized in the Golgi, where it functions in oligosaccharide synthesis, as well as on the cell surface where it serves as a cell adhesion molecule. GalTase-specific adhesions are functional in a number of important biological events, including F9 embryonal carcinoma (EC) cell adhesions. GalTase-based adhesions are formed by recognition and binding to terminal N-acetylglucosamine (GlcNAc) residues on its glycoprotein counterpart on adjacent cell surfaces. The object of this work has been to investigate the formation and function of GalTase-specific adhesions during F9 cell growth and differentiation. We initially investigated GalTase synthesis during differentiation and found that the increase in GalTase activity was specific for the Golgi compartment; surface GalTase levels remained constant during differentiation. These data indicated that the increase in cell adhesions expected with increased cell-matrix interaction in differentiated F9 cells is not the consequence of increased surface GalTase expression and, more interestingly, that the two pools of GalTase are under differential regulation. Synthesis and recognition of the consociate glycoprotein component was next investigated. Surface GalTase recognized several surface glycoproteins in a pattern that changes with differentiation. Uvomorulin, lysosome-associated membrane protein-1 (LAMP-1), and laminin were recognized by surface GalTase and are, therefore, potential components in GalTase-specific adhesions. Furthermore, these interactions were aberrant in an adhesion-defective F9 cell line that results, at least in part, from abnormal oligosaccharide synthesis. The function played by surface GalTase in growth and induction of differentiation was examined. Inhibition of surface GalTase function by a panel of reagents inhibited F9 cell growth. GalTase expression at both the transcription and protein levels were differentially regulated during the cell cycle, with surface expression greatest in the G1 phase. Disruption of GalTase adhesion by exposure to anti-GalTase antibodies during this period resulted in extension of the G2 phase, a result similar to that seen with agents known to inhibit growth and induce differentiation. Finally, other studies have suggested that a subset of cell adhesion molecules have the capability to induce differentiation in EC cells systems. We have determined in F9 cells that dissociating GalTase adhesion by galactosylation of and release of the consociate glycoproteins induces differentiation, as defined by increased laminin synthesis. The ability to induce differentiation by surface galactosylation was greatest in cells grown in cultures promoting cell-cell adhesions, relative to cultures with minimal cell-cell interactions. ^
Resumo:
The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^
Resumo:
The VirB11 ATPase is an essential component of an Agrobacterium tumefaciens type IV bacterial secretion system that transfers oncogenic nucleoprotein complexes to susceptible plant cells. This dissertation investigates the subcellular localization and homo-oligomeric state of the VirB11 ATPase in order to provide insights about the assembly of the protein as a subunit of this membrane-associated transfer system. Subcellular fractionation studies and quantitative immunoblot analysis demonstrated that $\sim$30% of VirB11 partitioned as soluble protein and $\sim$70% was tightly associated with the bacterial cytoplasmic membrane. No differences were detected in VirB11 subcellular localization and membrane association in the presence or absence of other transport system components. Mutations in virB11 affecting protein function were mapped near the amino terminus, just upstream of a region encoding a Walker 'A' nucleotide-binding site, and within the Walker 'A' motif partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. Merodiploid analysis of VirB11 mutant and truncation derivatives provided strong evidence that VirB11 functions as a homo- or heteromultimer and that the C-terminal half of VirB11 contains a protein interaction domain. A combination of biochemical and molecular genetic approaches suggested that VirB11 and the green fluorescence protein (GFP) formed a mixed multimer as demonstrated by immunoprecipitation experiments with anti-GFP antibodies. Second, a hybrid protein composed of VirB11 fused to the N-terminal DNA-binding domain of bacteriophage $\lambda$ cI repressor conferred immunity to $\lambda$ superinfection, demonstrating that VirB11 self-association promotes dimerization of the chimeric repressor. A conserved Walker 'A' motif, though required for VirB11 function in T-complex export, was not necessary for VirB11 self-association. Sequences in both the N- and the C-terminal halves of the protein were found to contribute to self-association of the full length protein. Chemical cross-linking experiments with His$\sb6$ tagged VirB11 suggested that VirB11 probably assembles into a higher order homo-oligomeric complex. ^
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^
Resumo:
Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^
Resumo:
This study developed proxy measures to test the independent effects of medical specialty, institutional ethics committee (IEC) and the interaction between the two, upon a proxy for the dependent variable of the medical decision to withhold/withdraw care for the dying--the resuscitation index (R-index). Five clinical vignettes were constructed and validated to convey the realism and contextual factors implicit in the decision to withhold/withdraw care. A scale was developed to determine the range of contact by an IEC in terms of physician knowledge and use of IEC policy.^ This study was composed of a sample of 215 physicians in a teaching hospital in the Southwest where proxy measures were tested for two competing influences, medical specialty and IEC, which alternately oppose and support the decision to withhold/withdraw care for the dying. A sub-sample of surgeons supported the hypothesis that an IEC is influential in opposing the medical training imperative to prolong life.^ Those surgeons with a low IEC score were 326 percent more likely to continue care than were surgeons with a high IEC score when compared to all other specialties. IEC alone was also found to significantly predict the decision to withhold/withdraw care. Interaction of IEC with the specialty of surgery was found to be the best predictor for a decision to withhold/withdraw care for the dying. ^