15 resultados para Flow cytometry. Immunophenotyping. Acute lymphoblastic leukemia

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third most preventable cardiovascular disease and a growing public health problem in the United States. The incidence of VTE remains high with an annual estimate of more than 600,000 symptomatic events. DVT affects an estimated 2 million American each year with a death toll of 300,000 persons per year from DVT-related PE. Leukemia patients are at high risk for both hemorrhage and thrombosis; however, little is known about thrombosis among acute leukemia patients. The ultimate goal of this dissertation was to obtain deep understanding of thrombotic issue among acute leukemia patients. The dissertation was presented in a format of three papers. First paper mainly looked at distribution and risk factors associated with development of VTE among patients with acute leukemia prior to leukemia treatment. Second paper looked at incidence, risk factors, and impact of VTE on survival of patients with acute lymphoblastic leukemia during treatment. Third paper looked at recurrence and risk factors for VTE recurrence among acute leukemia patients with an initial episode of VTE. Descriptive statistics, Chi-squared or Fisher's exact test, median test, Mann-Whitney test, logistic regression analysis, Nonparametric Estimation Kaplan-Meier with a log-rank test or Cox model were used when appropriate. Results from analyses indicated that acute leukemia patients had a high prevalence, incidence, and recurrent rate of VTE. Prior history of VTE, obesity, older age, low platelet account, presence of Philadelphia positive ALL, use of oral contraceptives or hormone replacement therapy, presence of malignancies, and co-morbidities may place leukemia patients at an increased risk for VTE development or recurrence. Interestingly, development of VTE was not associated with a higher risk of death among hospitalized acute leukemia patients.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropsychological impairment occurs in 20%-40% of childhood acute lymphoblastic leukemia (ALL) survivors, possibly mediated by folate depletion following methotrexate chemotherapy. We evaluated the relationship between two folate pathway polymorphisms and neuropsychological impairment after childhood ALL chemotherapy. Eighty-six childhood ALL survivors were recruited between 2004-2007 at Texas Children's Hospital after exclusion for central nervous system leukemia, cranial irradiation, and age<1 year at diagnosis. Neuropsychological evaluation at a median of 5.3 years off therapy included a parental questionnaire and the following child performance measures: Trail Making Tests A and B, Grooved Pegboard Test Dominant-Hand and Nondominant-Hand, and Digit Span subtest. We performed genotyping for polymorphisms in two folate pathway genes: reduced folate carrier (RFC1 80G>A, rs1051266) and dihydrofolate reductase (DHFR Intron-1 19bp deletion). Fisher exact test, logistic regression, Student's t-test, and ANOVA were used to compare neuropsychological test scores by genotype, using a dominant model to group genotypes. In univariate analysis, survivors with cumulative methotrexate exposure ≥9000 mg/m2 had an increased risk of attention disorder (OR=6.2, 95% CI 1.2 – 31.3), compared to survivors with methotrexate exposure <9000 mg/m2. On average, female survivors scored 8.5 points higher than males on the Digit Span subtest, a test of working memory (p=0.02). The RFC1 80G>A and DHFR Intron-1 deletion polymorphisms were not related to attention disorder or impairment on tests of attention, processing speed, fine motor speed, or memory. These data imply a strong relationship between methotrexate dose intensity and impairment in attention after childhood ALL therapy. We did not find an association between the RFC1 80G>A or DHFR Intron-1 deletion polymorphisms and long-term neuropsychological impairment in childhood ALL survivors.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of (a) month/season-of-birth as a risk factor and (b) month/season-of-treatment initation as a prognostic factor in acute lymphoblastic leukemia (ALL) in children, 0-15 years of age, was conducted. The study population used was that of the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute and included children diagnosed and treated for ALL from 1973-1986. Two separate sets of analyses using different exclusion criteria led to similar results. Specifically, the inability to reject the null hypothesis of no significant difference in the variation of monthly/seasonal incidence rates among children residing within the 10 SEER sites using either cosinor analysis or one-way analysis of variance. No association was established between month/season of treatment initiation and survival in ALL among children using either Kaplan-Meier or cosinor analysis. In separate Kaplan-Meier analyses, age, gender, and treatment type were each found to be significant univariate prognostic factors for survival, however. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor-specific chromosomal abnormalities have been demonstrated in bone marrow of approximately 50% of newly diagnosed acute nonlymphocytic (ANLL) patients. This study examined two hypotheses: (1) Aneuploid (AA) patients are diagnosed later in the course of their disease than diploid (NN) patients; and (2) AA patients are more likely to have been exposed to environmental agents. Of 324 patients eligible for study, environmental exposure data were obtained for 236 (73%) of them. No evidence was found to suggest that AA patients had more advanced disease than NN patients. Aneuploid patients were more likely than NN patients to: (a) report treatment with cytotoxic drugs for a prior medical condition (odds ratio, adjusted for age, sex and other exposures (OR) = 4.25, 95% confidence intervals, 1.38 to 13.17); (b) smoke cigarettes, OR = 1.82 (1.02, 3.26) and (c) drink alcoholic beverages, OR = 1.91 (1.05, 3.48). No statistically significant associations between aneuploidy and occupational exposures were present, OR = 3.59 (0.76, 17.13). Problems in interpreting these ORs are discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. In Dr. Mel Greaves "delayed-infection hypothesis," postponed exposure to common infections increases the likelihood of childhood cancer. Hygienic advancements in developed countries have reduced children's exposure to pathogens and children encounter common infectious agents at an older age with an immune system unable to deal with the foreign antigens. Vaccinations may be considered to be simulated infections as they prompt an antigenic response by the immune system. Vaccinations may regulate the risk of childhood cancer by modulating the immune system. The aim of the study was to determine if children born in Texas counties with higher levels of vaccination coverage were at a reduced risk for childhood cancer.^ Methods. We conducted a case-control study to examine the risk of childhood cancers, specifically leukemia, brain tumors, and non-Hodgkin lymphoma, in relation to vaccination rates in Texas counties. We utilized a multilevel mixed-effects regression model of the individual data from the Texas Cancer Registry (TCR) with group-level exposure data (i.e., the county- and public health region-level vaccination rates).^ Results. Utilizing county-level vaccination rates and controlling for child's sex, birth year, ethnicity, birth weight, and mother's age at child's birth the hepatitis B vaccine revealed negative associations with developing all cancer types (OR = 0.81, 95% CI: 0.67–0.98) and acute lymphoblastic leukemia (ALL) (OR = 0.63, 95% CI: 0.46–0.88). The decreased risk for ALL was also evident for the inactivated polio vaccine (IPV) (OR = 0.67, 95% CI: 0.49–0.92) and 4-3-1-3-3 vaccination series (OR = 0.62, 95% CI: 0.44-0.87). Using public health region vaccine coverage levels, an inverse association between the Haemophilus influenzae type b (Hib) vaccine and ALL (OR: 0.58; 95% CI: 0.42–0.82) was present. Conversely, the measles, mumps, and rubella (MMR) vaccine resulted in a positive association with developing non-Hodgkin lymphoma (OR = 2.81, 95% CI: 1.27–6.22). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-β-D-arabinosylguanine (ara-G), an analogue of deoxyguanosine, has demonstrated T-lymphoblast selective anti-leukemia activity both in vitro and in vivo in cell lines and primary cells and in phase I investigations. The present work was initiated to identify factors that result in this selectivity. ^ The cytotoxicity of ara-G is manifest only after its phosphorylation. Experiments using cell lines transfected to overexpress specific nucleoside kinases demonstrated that the phosphorylation of ara-G to its monophosphate is by both cytoplasmic deoxycytidine kinase and mitochondria) deoxyguanosine kinase. Ara-G monophosphate is converted to its 5′-triphosphate (ara-GTP) in cells by these kinases and then incorporated into DNA. Mechanistic studies demonstrated that incorporation of ara-GTP into DNA was a necessary event for the induction of cell death. ^ Pharmacokinetic and pharmacodynamic studies utilizing three human acute leukemia cell lines, CEM (T-lymphoblastic), Raji (B-lymphoblastic), and ML-1 (myeloid) were performed. CEM cells were most sensitive to ara-G-induced inhibition of colony formation, accumulated ara-GTP at a faster rate and to a greater degree than either Raji or ML-1, but incorporated the lowest number of ara-G molecules into DNA. The position of incorporation was internal and similar in all cell lines. The terminal elimination phase of ara-GTP was >24 h and similar in these cells. Comparisons between inhibition of colony formation and ara-GTP incorporation into DNA demonstrated that while within a cell line there was correlation among these parameters, between cell lines there was no relationship between number of incorporated ara-G molecules and ara-G(TP)-mediated toxicity suggesting that there were additional factors. ^ The expression of membrane bound Fas and Fast was unchanged in all cell lines. In contrast, there was a 2-fold increase in soluble Fast, which was found exclusively in CEM cells. Ara-G-mediated apoptosis in CEM occurred from all phases of the cell cycle and was abrogated partially by Fas antagonist antibodies. These data suggest that Fas-mediated cell death due to the liberation of sFasL may be responsible for the hypersensitivity to ara-G manifested by immature T-cells such as CEM. The role of Fas in ara-G induced death of acute T-lymphoblastic leukemia cells during therapy needs to be tested. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS: Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS: At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS: The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Traumatic brain injury (TBI) frequently results in devastating and prolonged morbidity. Cellular therapy is a burgeoning field of experimental treatment that has shown promise in the management of many diseases, including TBI. Previous work suggests that certain stem and progenitor cell populations migrate to sites of inflammation and improve functional outcome in rodents after neural injury. Unfortunately, recent study has revealed potential limitations of acute and intravenous stem cell therapy. We studied subacute, direct intracerebral neural stem and progenitor cell (NSC) therapy for TBI. MATERIALS AND METHODS: The NSCs were characterized by flow cytometry and placed (400,000 cells in 50 muL 1x phosphate-buffered saline) into and around the direct injury area, using stereotactic guidance, of female Sprague Dawley rats 1 wk after undergoing a controlled cortical impact injury. Immunohistochemistry was used to identify cells located in the brain at 48 h and 2 wk after administration. Motor function was assessed using the neurological severity score, foot fault, rotarod, and beam balance. Cognitive function was assessed using the Morris water maze learning paradigm. Repeated measures analysis of variance with post-hoc analysis were used to determine significance at P < 0.05. RESULTS: Immunohistochemistry analysis revealed that 1.4-1.9% of infused cells remained in the neural tissue at 48 h and 2 wk post placement. Nearly all cells were located along injection tracks at 48 h. At 2 wk some cell dispersion was apparent. Rotarod motor testing revealed significant increases in maximal speed among NSC-treated rats compared with saline controls at d 4 (36.4 versus 27.1 rpm, P < 0.05) and 5 (35.8 versus 28.9 rpm, P < 0.05). All other motor and cognitive evaluations were not significantly different compared to controls. CONCLUSIONS: Placement of NSCs led to the cells incorporating and remaining in the tissues 2 wk after placement. Motor function tests revealed improvements in the ability to run on a rotating rod; however, other motor and cognitive functions were not significantly improved by NSC therapy. Further examination of a dose response and optimization of placement strategy may improve long-term cell survival and maximize functional recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) have been recognized as one of the most feared long-term complications of cancer therapy. The aim of this case-control study was to determine the prevalence of chromosomal abnormalities and family history of cancer among secondary AML/MDS cases and de novo AML/MDS controls. Study population were 332 MD Anderson Cancer Center patients who were registered between 1986 and 1994. Cases were patients who had a prior invasive cancer before diagnoses of AML/MDS and controls were de novo AML/MDS. Cases (166) and controls (166) were frequency matched on age $\pm$5 years, sex and year of diagnosis of leukemia. Cytogenetic data were obtained from the leukemia clinic database of MD Anderson Cancer Center and data on family history of cancer and other risk factors were abstracted from the patients' medical record. The distribution of AML and MDS among cases was 58% and 42% respectively and among controls 67% and 33% respectively. Prevalence of chromosomal abnormalities were observed more frequently among cases than controls. Reporting of family history of cancer were similar among both groups. Univariate analysis revealed an odds ratio (OR) of 2.8 (95% CI 1.5-5.4) for deletion of chromosome 7, 1.9 (95% CI 0.9-3.8) for deletion of chromosome 5, 2.3 (95% CI 0.8-6.2) for deletion of 5q, 2.0 (95% CI 1.0-4.2) for trisomy 8, 1.3 (95% CI 0.8-2.1) for chromosomal abnormalities other than chromosome 5 or 7 and 1.3 (95% CI 0.8-2.0) for family history of cancer in a first degree relative. The OR remained significant for deletion of chromosome 7 (2.3, 95% CI 1.1-4.8) after adjustment for age, alcohol, smoking, occupation related to chemical exposure and family history of cancer in a first degree relative. Of the 166 secondary AML/MDS patients 70% had a prior solid tumor and 30% experienced hematological cancers. The most frequent cancers were breast (21.1%), non-Hodgkin lymphoma (13.3%), Hodgkin's disease (10.2%), prostate (7.2%), colon (6%), multiple myeloma (3.6%) and testes (3.0%). The majority of these cancer patients were treated with chemotherapy or radiotherapy or both. Abnormalities of chromosome 5 or 7 were found to be more frequent in secondary AML/MDS patients with prior hematological cancer than patients with prior solid tumors. Median time to develop secondary AML/MDS was 5 years. However, secondary AML/MDS among patients who received chemotherapy and had a family history of cancer in a first degree relative occurred earlier (median 2.25 $\pm$ 0.9 years) than among patients without such family history (median 5.50 $\pm$ 0.18 years) (p $<$.03). The implication of exposure to chemotherapy among patients with a family history of cancer needs to be further investigated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular mechanisms that underlie preleukemic myelodysplasia (MDS) and acute myelogenous leukemia (AML) are poorly understood. In MDS or AML with a refractory clinical course, more than 30% of patients have acquired interstitial or complete deletions of chromosome 5. The 5q13.3 chromosomal segment is commonly lost as the result of 5q deletion. Reciprocal and unbalanced translocations of 5q13.3 can also occur as sole anomalies associated with refractory AML or MDS. This study addresses the hypothesis that a critical gene at 5q13.3 functions either as a classical tumor suppressor or as a chromosomal translocation partner and contributes to leukemogenesis. ^ Previous studies from our laboratory delineated a critical region of loss to a 2.5–3.0Mb interval at 5q13.3 between microsatellite markers D5S672 and GATA-P18104. The critical region of loss was later resolved to an interval of approximately 2Mb between the markers D5S672 and D5S2029. I, then generated a long range physical map of yeast artificial chromosomes (YACs) and developed novel sequence tagged sites (STS). To enhance the resolution of this map, bacterial artificial chromosomes (BACs) were used to construct a triply linked contig across a 1 Mb interval. These BACs were used as probes for fluorescent in situ hybridization (FISH) on an AML cell line to define the 5q13.3 critical region. A 200kb BAC, 484a9, spans the translocation breakpoint in this cell line. A novel gene, SSDP2 (single stranded DNA binding protein), is disrupted at the breakpoint because its first four exons are encoded within 140kb of BAC 484a9. This finding suggests that SSDP2 is the critical gene at 5q13.3. ^ In addition, I made an observation that deletions of chromosome 5q13 co-segregate with loss of the chromosome 17p. In some cases the deletions result from unbalanced translocations between 5q13 and 17p13. It was confirmed that the TP53 gene is deleted in patients with 17p loss, and the remaining allele harbors somatic mutation. Thus, the genetic basis for the aggressive clinical course in AML and MDS may be caused by functional cooperation between deletion or disruption of the 5q13.3 critical gene and inactivation of TP53. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^