4 resultados para Fishes Physiology
em DigitalCommons@The Texas Medical Center
Resumo:
A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phospho-gluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci--isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of chi2 was significant (less than 0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA--6%--G6PDH--24%--6PGD, and ADA--29%--6PGD (30% when corrected for double crossovers), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.
Resumo:
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.
Resumo:
In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPAR gamma ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.
Resumo:
Inbred strains of three species of fishes of the genus Xiphophorus (platyfish and swordtails) were crossed to produce intra- and interspecific F(,1) hybrids, which were then backcrossed to one or both parental stocks. Backcross hybrids were used for the analysis of segregation and linkage of 33 protein-coding loci (whose products were visualized by starch gel electrophoresis) and a sex-linked pigment pattern gene. Segregation was Mendelian for all loci with the exception of one instance of segregation distortion. Six linkage groups of enzyme-coding loci were established: LG I, ADA --6%-- G(,6)PD --24%-- 6PGD; LG II, Est-2 --27%-- Est-3 --0%-- Est-5 --23%-- LDH-1 --16%-- MPI; LG III, AcPh --38%-- G(,3)PD-1 (GUK-2 --14%-- G(,3)PD-1 is also in LG III, but the position of GUK-2 with respect to AcPh has not yet been determined); LG IV, GPI-1 --41%-- IDH-1; LG V, Est-1 --38%-- MDH-2; and LG VI, P1P --7%-- UMPK-1 (P1P is a plasma protein, very probably transferrin).^ Sex-specific recombination appeared absent in LG II and LG IV locus pairs; significantly higher male recombination was demonstrated in LG I but significantly higher female recombination was detected in LG V. Only one significant population-specific difference in recombination was detected, in the G(,6)PD - 6PGD region of LG I; the notable absence of such effects implies close correspondence of the genomes of the species used in the study. Two cases of possible evolutionary conservation of linkage groups in fishes and mammals were described, involving the G(,6)PD - 6PGD linkage in LG I and the cluster of esterase loci in LG II. One clear case of divergence was observed, that of the linkage of ADA in LG I. It was estimated that a minimum of (TURN)50% of the Xiphophorus genome was marked by the loci studied. Therefore, the prior probability that a new locus will assort independently from the markers already established is estimated to be less than 0.5. A maximum of 21 of the 24 pairs of chromosomes could be marked with at least one locus.^ Only the two LG V loci showed a significant association with a postulated gene controlling the severity of a genetically controlled melanoma caused by abnormal proliferation of macromelanophore pigment pattern cells. The independence of melanotic severity from all other informative markers implies that one or at most a few major genes are involved in control of melanotic severity in this system. ^