2 resultados para Firefly Luciferin
em DigitalCommons@The Texas Medical Center
Resumo:
Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.
Resumo:
The pattern of expression of the pro$\alpha$2(I) collagen gene is highly tissue-specific in adult mice and shows its strongest expression in bones, tendons, and skin. Transgenic mice were generated harboring promoter fragments of the mouse pro$\alpha$2(I) collagen gene linked to the Escherichia coli $\beta$-galactosidase or firefly luciferase genes to examine the activity of these promoters during development. A region of the mouse pro$\alpha$2(I) collagen promoter between $-$2000 and +54 exhibited a pattern of $\beta$-galactosidase activity during embryonic development that corresponded to the expression pattern of the endogenous pro$\alpha$2(I) collagen gene as determined by in situ hybridization. A similar pattern of activity was also observed with much smaller promoter fragments containing either 500 or 350 bp of upstream sequence relative to the start of transcription. Embryonic regions expressing high levels of $\beta$-galactosidase activity included the valves of the developing heart, sclerotomes, meninges, limb buds, connective tissue fascia between muscle fibers, osteoblasts, tendon, periosteum, dermis, and peritoneal membranes. The pattern of $\beta$-galactosidase activity was similar to the extracellular immunohistochemical localization of transforming growth factor-$\beta$1 (TGF-$\beta$1). The $-$315 to $-$284 region of the pro$\alpha$2(I) collagen promoter was previously shown to mediate the stimulatory effects of TGF-$\beta$1 on the pro$\alpha$2(I) collagen promoter in DNA transfection experiments with cultured fibroblasts. A construct containing this sequence tandemly repeated 5$\sp\prime$ to both a very short $\alpha$2(I) collagen promoter ($-$40 to +54) and a heterologous minimal promoter showed preferential activity in tail and skin of 4-week old transgenic mice. The pattern of expression mimics that of the $-$350 to +54 pro$\alpha$2(I) collagen promoter linked to a luciferase reporter gene in transgenic mice. ^