2 resultados para Female Form

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regardless of genetic sex, amniotes develop two sets of genital ducts, the Wolffian and Müllerian ducts. Normal sexual development requires the differentiation of one duct and the regression of the other. I show that cells in the rostral most region of the coelomic epithelium (CE) are specified to a Müllerian duct fate beginning at Tail Somite Stage 19 (TS19). The Müllerian duct (MD) invaginates from the CE where it extends caudally to and reaches the Wolffian duct (WD) by TS22. Upon contact, the MD elongates to the urogenital sinus separating the WD from the CE and its formation is complete by TS34. During its elongation, the MD is associated with and dependent upon the WD and I have identified the mechanism for MD elongation. Using the Rosa26 reporter to fate map the WD, I show that the WD does not contribute cells to the MD. Using an in vitro recombinant explant culture assay I show that the entire length of the MD is derived from the CE. Furthermore, I analyzed cell proliferation and developed an in vitro assay to show that a small population of cells at the caudal tip proliferates, laying the foundation for the formation of the MD. I also show that during its formation, the MD has a distinctive mesoepithelial character. The MD in males regresses under the influence of Anti-Müllerian Hormone (AMH). Through tissue-specific gene inactivation I have identified that Acvr1 and Bmpr1a and Smad1, Smad5 and Smad8 function redundantly in transducing the AMH signal. In females the MD differentiates into an epithelial tube and eventually the female reproductive tract. However, the exact tissue into which the MD differentiates has not been determined. I therefore generated a MD specific Cre allele that will allow for the fate mapping of the MD in both females males. The MD utilizes a unique form of tubulogenesis during development and to my knowledge is the only tubule that relies upon a signal from and the presence of another distinct epithelial tube for its formation.^