7 resultados para Fatty acids - Biochemistry

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of proton conductance across artificial membranes has revealed a surprisingly high permeability for H+, (Pnet H+). A high Pnet H+ is difficult to reconcile with the biological requirement for the maintenance of pH gradients across the plasma membranes of cells, organellar study was undertaken to examine the role played by cholesterol and phospholipid fatty acid side chain composition in determining how well a membrane will function as a barrier to acid. The effects of counter-ion movement on acidification rates were examined in order to interpret the data obtained from variations in membrane composition. In phosphate buffered saline solutions, vesicle membranes composed of unsaturated fatty acid phosphatidylcholines proved to be poorer barriers to acid than membranes composed of saturated fatty acids. The barrier properties of these membranes could be ranked in the following order: DPL, (palmitic) $>$ Egg PC, (mixed chains) $>$ DLL, (linoleic), with DPL being the most effective in maintaining a one pH unit gradient near neutrality. Cholesterol decreased acidification rates of membranes made from the unsaturated phosphatidylcholines Egg PC and DLL, but enhanced acidification rates in vesicle membranes composed of the saturated phospholipid DPL. The cholesterol and fatty acid side chain effects were mediated by changes in membrane fluidity, with more rigid bilayers forming better barriers to acid. Experimental evidence was obtained which confirmed the Pnet H+ is very high relative to the permeabilities of other ions. Counter-ion controlled acidification rates depended on the size and charge of the ion which was moving in order to maintain electroneutrality. The biological relevance of a high intrinsic Pnet H+ and the possible role of counter-ion controlled acidification were discussed. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous proteins in intracellular signaling pathways are known to be covalently modified by long chain fatty acids. The objective of this project was to identify potentially novel components of the protein kinase C signaling pathway by virtue of their fatty acylation. A 64 kDa palmitoylated protein (p64) was identified that became deacylated following stimulation of quiescent cells with serum, FGF, or PDBu, suggesting that stimulus-dependent deacylation might alter interactions between p64 and other membrane/cytoskeletal components. A myristoylated protein of 68 kDa observed during these studies was identified as the "80K" PKC substrate. This protein was acylated cotranslationally with myristate through an amide linkage. The majority of the 80K protein was tightly associated with the plasma membrane, with approximately 20% in the cytosol. Although phosphorylation of the membrane-bound and soluble forms of the protein was increased 6-fold in response to PDBu, no changes in the subcellular distribution or myristoylation of the protein were observed. A cDNA encoding the murine form of this protein was cloned, and its deduced amino acid sequence revealed the presence of an N-terminal myristoylation consensus and five potential sites for phosphorylation by PKC. A mutant in which the N-terminal glycine residue was changed to alanine was no longer a substrate for NMT and consequently lost its membrane-binding potential. However, its ability to be phosphorylated in response to purified growth factors and phorbol esters was unimpaired. These results indicate that the myristoylated N-terminus of the 80K protein is required for its association with the plasma membrane, and that the cytoplasmic form of the protein can be phosphorylated independently of the membrane-bound form. Mutants of PKC were constructed in which the regulatory domain was removed and replaced by the N-terminus of the 80K or Al proteins. Unexpectedly, both the myristoylated and nonmyristoylated fusion proteins were tightly associated with the nuclear envelope. Further deletion analyses mapped nuclear targeting signals to the hinge region and a portion of the catalytic domain of PKC, explaining the ability of PKC to be translocated to the nucleus in response to certain stimuli. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of death in women and rates markedly increase among women after 65 years of age. C-reactive protein (CRP) is a new clinical indicator of atherosclerotic-related inflammation with a direct pathogenic role. Studies show lifestyle factors can modulate CRP. Omega-3 fatty acids have anti-inflammatory properties and studies suggest that eating fish high in omega-3 fatty acids may lower CHD risk in women. This study sought to assess the possible role of omega-3 fatty acids in the reduction of CHD-related inflammation by investigating the effect of fish consumption on CRP levels. Methods. Twenty-four healthy postmenopausal women were randomly assigned to a fish group (usual diet plus two servings per week of enriched fish) or control group (usual diet with no fatty fish) for eight weeks. Omega-3 fatty acid-enriched fish developed by the West Virginia University Aquaculture Division was used. Serum CRP, serum interleukin-6 (IL-6), and the fatty acid content of red blood cells (RBC) were measured before and after the study. Women also completed food records. RESULTS: Baseline levels of CRP were low (85% of the fish group had normal levels) and few changes in CRP risk category were observed. Mean IL-6 levels were reduced by 27% and 35% in the fish and control groups, respectively (p for between-group difference = 0.60). Changes in RBC fatty acid composition were not statistically significant. Compared to control women, women in the fish group had greater reductions in mean triglycerides (p = 0.08), total cholesterol (P = 0.04), and LDL cholesterol levels (p = 0.06). Baseline dietary intake of total and monounsaturated fatty acids tended to be positively associated with baseline CRP, while vitamin E intake was inversely related. Saturated fat intake tended to have a positive association with IL-6. Conclusions. Findings regarding the effect of two servings of fish on CRP and IL-6 levels are inconclusive due to low baseline levels of CRP and IL-6. However, results indicate two servings of fatty fish have favorable effects on blood lipids. The relationship of dietary components with CRP and IL-6 is complex and further research is needed to determine the varying roles of diet on the inflammatory process. ^