5 resultados para FUSING AGENT VIRUS

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Soehner-Dmochowski strain of murine sarcoma virus (MuSV-SD) was derived from a bone tumor of a New Zealand Black (NZB) rat infected with the Moloney strain of MuSV, which carries the gene encoding the v-mos protein. Serial passage of cell-free tumor extracts both decreased the latent period and resulted in osteosarcomas. Cells from a late passage tumor were established in culture, cell-free extracts frozen, and later inoculated into newborn NZB rats. One of the resulting bone tumors was established in culture and clonal cell lines derived, of which S4 was selected for the present study. The objectives of the study were two-fold: an examination of the genetic organization of MuSV-SD, and an examination of the biochemical characteristics of the viral proteins, since this is an acutely transforming virus which may yield insights into the mechanism of transformation caused by the v-mos protein. Blot hybridization of digested S4 genomic DNA reveals three candidate MuSV-SD integrated viral DNAs. The largest of these, MuSV-SD-6.5, was cloned from an S4 cosmid library, and the complete MuSV-SD-mos sequence was determined. The predicted amino acid sequence of the v-mos protein was compared to that of MuSV-124 and Ht-1, which show a 96.5% and 97.1% similarity, respectively. To characterize the MuSV-SD-mos protein further, immunochemical assays were performed using anti-mos antisera. The immunoblot analysis and immunoprecipitation assays demonstrated that similar levels of the v-mos protein were present in cells chronically infected with either MuSV-SD or MuSV-124; however, the immune complex kinase assay revealed greatly reduced in vitro serine kinase activity of the MuSV-SD-mos protein compared to that of MuSV-124. Sequence analysis demonstrated that the serine at amino acid residue 358 of the MuSV-SD-mos protein, like that of MuSV-Ht-1, had been mutated to a glycine. Mutations of this serine residue have been shown to affect the detectable in vitro kinase activity, however, v-mos proteins containing this mutation still retain transforming properties. Therefore, although the characteristic in vitro kinase activity of the MuSV-SD-mos protein has not been demonstrated, it is clear that this virus is a potent transforming agent. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells infected with a temperature sensitive phenotypic mutant of Moloney sarcoma virus (MuSVts110) exhibit a transformed phenotype at 33('(DEGREES)) and synthesize two virus specific proteins, p85('gag-mos), a gag-mos fusion protein and p58('gag), a truncated gag precursor protein (the gag gene codes for viral structural proteins and mos is the MuSV transforming gene). At 39('(DEGREES)) only p58('gag) is synthesized and the morphology of the cells is similar to uninfected NRK parental cells. Two MuSVts110 specific RNAs are made in MuSVts110-infected cells, one of 4.0 kb in length, the other of 3.5 kb. Previous work indicated that each of these RNAs arose by a single central deletion of parental MuSV genetic material, and that p58('gag) was made by the 4.0 kb RNA and p85('gag-mos) from the 3.5 kb RNA. The objective of my dissertation research was to map precisely the deletion boundaries of both of the MuSVts110 RNAs, and to determine the proper reading frame across both deletion borders. This work succeeded in arriving at the following conclusions: (a) Using S-1 nuclease analysis and primer extension sequencing, it was found that the 4.0 kb MuSVts110 RNA arose by a 1488 base deletion of 5.2 kb parental MuSV genomic RNA. This deletion resulted in an out of frame fusion of the gag and mos genes that resulted in the formation of a "stop" codon which causes termination of translation just beyond the c-terminus of the gag region. Thus, this RNA can only be translated into the truncated gag protein p58('gag). (b) S-1 analysis of RNA from cells cultivated at different temperatures demonstrated that the 4.0 kb RNA was synthesized at all temperatures but that synthesis of the 3.5 kb RNA was temperature sensitive. These observations supported the data derived from blot hybridization experiments the interpretation of which argued for the existence of a single provirus in MuSVts110 infected cells, and hence only a single primary transcript (the 4.0 kb RNA). (c) Analyses similar to those described in (a) above showed that the 3.5 kb RNA was derived from the 4.0 kb MuSVts110 RNA by a further deletion of 431 bases, fusing the gag and mos genes into a continuous reading frame capable of directing synthesis of the p85('gag-mos) protein. These sequence data and the presence of only one MuSVts110-specific provirus, indicate that a splice mechanism is employed to generate the 3.5 kb RNA since the gag and mos genes are observed to be fused in frame in this RNA. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noro virus, a positive single stranded RNA virus has been identified as a major etiologic agent in food borne gastroenteritis and diarrheal diseases. The emergence of this organism as a major non-bacterial cause in such outbreaks is partly due to the improved diagnostic tools like Reverse Transcription Polymerase chain reaction (RTPCR) that enable its detection. Noro virus accounts for nearly 96% of non-bacterial gastroenteritis outbreaks in US (1). Travelers' Diarrhea (TD) has remained a constant public health risk in the developed nations for decades and bacteria like Entero toxigenic Escherichia coli, Entero aggregative Escherichia coli have been described as the main etiologic agents for TD (2-4). A possible viral contribution to TD has been discovered in two studies (5, 6). The current study was designed to determine the prevalence of Noro virus in a population of 107 US students with TD acquired in Mexico in 2005 and to compare the prevalence to the prevalence of Noro virus in a similar study done in 2004. This study involved the testing of clinical stool specimens from 107 subjects in 2005 for the presence of Noro virus using RTPCR. The prevalence of Noro virus in 2004 used for comparison to 2005 data was obtained from published data (5). All subjects were recruited as TD subjects in a randomized, double-blinded clinical trial comparing a standard three day dosing of Rifaximin with and without an anti motility drug Loperamide. The prevalence of Noro virus geno group I was similar in both years, but geno group II prevalence differed across the two years (p = 0.003). This study finding suggests that the prevalence of Noro virus geno groups varies with time even within a specific geographic location. This study emphasizes the need for further systematic epidemiologic studies to determine the molecular epidemiology and the prevalence patterns of different geno groups of this virus. These are essential to planning and implementation of public health measures to lessen the burden of TD due to Noro virus infection among US travelers. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.