2 resultados para FUNGUS GNATS

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption is an important process for energy production and sensory perception in many organisms. In the filamentous fungus, Neurospora crassa, blue-light is an important regulator of both asexual and sexual development, but the identity of the blue-light receptor is unknown. The work presented in this dissertation initiated the characterization of the putative N. crassa opsin photoreceptor, NOP-1. Opsins were thought to exist only in the archaea and mammals until the discovery of nop-1. All opsins have the same conserved structure of seven transmembrane helical domains with a lysine residue in the seventh helix specific for forming a Schiff-base linkage with retinal. The predicted NOP-1 protein sequence is equally similar to archaeal rhodopsins and a newly identified fungal opsin-related protein group (ORPs). ORPs maintain the seven transmembrane helical structure of opsins, but lack the conserved lysine residue for binding retinal. An ORP gene, orp-1 was identified in N. crassa and this work includes the cloning and sequence analysis of this gene. Characterization of NOP-1 function in N. crassa development began with the construction of a Δnop-1 deletion mutant. Extensive phenotypic analysis of Δnop-1 mutants revealed only subtle defects during development primarily under environmental conditions that induce a stress response. NOP-1 was overexpressed in the heterologous system Pichia pastoris, and it was demonstrated that NOP-1 protein bound all-trans retinal to form a green-light absorbing pigment (λmax = 534 nm) with a photochemical reaction cycle similar to archaeal sensory rhodopsins. nop-1 gene expression was monitored during N. crassa development. nop-1 transcript is highly expressed during asexual sporulation (conidiation) and transcript levels are abundant in the later stages of conidial development. nop-1 expression is not regulated by blue-light or elevated temperatures. Potential functions for NOP-1 were discovered through the transcriptional analysis of conidiation-associated genes in Δnop-1 mutants. NOP-1 exhibits antagonistic transcriptional regulation of conidiation-associated genes late in conidial development, by enhancing the carotenogenic gene, al-2 and repressing the conidiation-specific genes, con-10 and con-13. ^