27 resultados para FTSZ-INTERACTING PROTEIN
em DigitalCommons@The Texas Medical Center
Resumo:
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
Resumo:
Lodestar, a Drosophila maternal-effect gene, is essential for proper chromosome segregation during embryonic mitosis. Mutations in lodestar cause chromatin bridging in anaphase, preventing the sister chromatids from fully separating and leaving chromatin tangled at the metaphase plate. Drosophila lodestar protein was originally identified, in purified fractions of Drosophila Kc cell nuclear extracts, by its ability to suppress the generation of long RNA polymerase II transcripts. The human homolog of this protein (hLodestar) was cloned and studied in comparison to the Drosophila lodestar activities. The results of these studies show, similar to the Drosophila protein, hLodestar has dsDNA-dependent ATPase and transcription termination activity in vitro. hLodestar has also been shown to release RNA polymerase I and II stalled at a cyclobutane thymine dimer. Lodestar belongs to the SNF2 family of proteins, which are members of the DExH/D helicase super-family. The SNF2 family of proteins are believed to play a critical role in altering protein-DNA interactions in a variety of cellular contexts. We have recently isolated a human cDNA (hLodestar) that shares significant homology to the Drosophila lodestar gene. The 4.6 kb clone contains an open reading frame of 1162 amino acids, and shares 55% similarity and 46% identity to the Drosophila Lodestar protein sequence. Our studies looking for hLodestar interacting proteins revealed an association with CDC5L in the yeast two-hybrid system and co-immunoprecipitation experiments. CDC5L has been well documented to be a component of the spliceosome. Our data suggests hLodestar is involved in splicing through in vitro assembly and splicing reactions, in addition to its association with spliceosomes purified from HeLa nuclear extract. Although many other members of the DExH/D helicase super-family have been linked to splicing, this is the first SNF2 family member to be implicated in the splicing reaction. ^
Resumo:
Nitric oxide (NO) transduces most of its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC). Activation of sGC results in the production of 3′,5 ′-cyclic guanosine monophosphate (cGMP) from 5′ -guanosine triphosphate (GTP). In this thesis, we demonstrate a novel protein interaction between CCT (chaperonin containing t-complex polypeptide) subunit η and the α1β1 isoform of sGC. Using the yeast-two-hybrid system, CCTη was found to interact with the N-terminal portion of β1 subunit of sGC. This interaction was then confirmed in vitro with a co-immunoprecipitation from mouse brain. The interaction between these two proteins was further supported by a co-localization of the proteins within rat brain. Using the yeast-two-hybrid system, CCTη was found to bind to the N-terminal portion of sGC. In vitro assays with purified CCTη and Sf9 lysate expressing sGC resulted in a 33% inhibition of sodium nitroprusside (SNP)-stimulated sGC activity. The same assays were then performed using BAY41-2272, an NO-independent allosteric sGC activator, and CCTη had no effect on this activity. Furthermore, CCTη had no effect on the activity of αβCys105 sGC a constitutively active mutant that lacks a heme group. Of note is the fact that the full-length CCTη-expressing bacterial lysate inhibited the activity of sGC-expressing Sf9 lysate by 48% compared with GST alone. This indicates that the amino terminal 94 amino acids of CCTη are important to the inhibition of sGC activity. Lastly, a 45% inhibition of sGC activity by CCTη was seen in vivo in BE2 cells stably transfected with CCTη and treated with SNP. The fact that the inhibition of sGC was more pronounced with bacterial lysate expressing CCTη versus the purified CCTη implies that some factor in the bacterial lysate enhances the inhibitory effect of CCTη. Because the level of inhibition seen in bacterial lysate and in vivo experiments is similar, might imply that the factor that aids in CCTη effect on sGC is conserved. Together, these data suggest that CCTη is a novel type of sGC inhibitor that inhibits sGC by modifying the binding of NO to the heme group or the subsequent conformational changes induced by NO binding. ^
Resumo:
Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.
Resumo:
Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^
Resumo:
Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.
Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia.
Resumo:
A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow-derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins.
Resumo:
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.
Resumo:
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.
Resumo:
Identifying and characterizing the genes responsible for inherited human diseases will ultimately lead to a more holistic understanding of disease pathogenesis, catalyze new diagnostic and treatment modalities, and provide insights into basic biological processes. This dissertation presents research aimed at delineating the genetic and molecular basis of human diseases through epigenetic and functional studies and can be divided into two independent areas of research. The first area of research describes the development of two high-throughput melting curve based methods to assay DNA methylation, referred to as McMSP and McCOBRA. The goal of this project was to develop DNA methylation methods that can be used to rapidly determine the DNA methylation status at a specific locus in a large number of samples. McMSP and McCOBRA provide several advantages over existing methods, as they are simple, accurate, robust, and high-throughput making them applicable to large-scale DNA methylation studies. McMSP and McCOBRA were then used in an epigenetic study of the complex disease Ankylosing spondylitis (AS). Specifically, I tested the hypothesis that aberrant patterns of DNA methylation in five AS candidate genes contribute to disease susceptibility. While no statistically significant methylation differences were observed between cases and controls, this is the first study to investigate the hypothesis that epigenetic variation contributes to AS susceptibility and therefore provides the conceptual framework for future studies. ^ In the second area of research, I performed experiments to better delimit the function of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), which when mutated causes various forms of inherited blindness such as Leber congenital amaurosis. A yeast two-hybrid screen was performed to identify putative AIPL1-interacting proteins. After screening 2 × 106 bovine retinal cDNA library clones, 6 unique putative AIPL1-interacting proteins were identified. While these 6 AIPL1 protein-protein interactions must be confirmed, their identification is an important step in understanding the functional role of AIPL1 within the retina and will provide insight into the molecular mechanisms underlying inherited blindness. ^
Resumo:
Mammalian Alix (ALG2-interacting protein X&barbelow;) is a conserved adaptor protein that is involved in endosomal trafficking, apoptosis and growth factor receptor turnover. Accumulating evidence also indicates that Alix plays roles in promoting/maintaining spread and aligned fibroblast morphology in monolayer culture. Since cell morphology is determined by the structure and dynamics of an integrin-mediated transmembrane protein network that links extracellular matrix to intracellular cytoskeleton, we hypothesized that Alix plays direct or indirect roles in regulating certain components or steps in this transmembrane protein network. To test this hypothesis, we first examined the subcellular localization of Alix and discovered that, as a predominantly cytoplasmic protein, Alix is also present on the substratum/cell surface and in the conditioned medium of fibroblast cultures. Further, precoating of culture surfaces with recombinant Alix promotes spreading and fibronectin assembly to NIH/3T3 cells, and siRNA-mediated Alix knockdown in W138 cells has the opposite effects. These findings indicate the extracellular functions of Alix in regulating cell spreading and extracellular matrix assembly. In a separate study, we analyzed Alix immunocomplexes from normal fibroblast W138 cells by mass spectrometry and identified actin as a major partner protein of Alix. Follow-up studies demonstrated that Alix preferentially binds filamentous actin (F-actin) in vitro and is required for maintaining normal F-actin content and proper actin cytoskeleton assembly in W138 cells. These findings establish direct and essential roles of Alix in regulating actin cytoskeleton. Finally, we investigated the effects of Alix knockdown on the activation and subcellular localization of FAK and Pyk2, the focal adhesion kinases required for cell spreading/migration by promoting turnover of integrin-mediated cell adhesions. We discovered that Alix knockdown inhibits FAK and Pyk2 localizations to focal adhesions or plasma membrane, in association with characteristics of reduced turnover of focal adhesions. These findings reveal a positive role of Alix in focal adhesion turnover. Based on these results, we conclude that Alix targets both intracellularly and extracellularly components to regulate extracellular matrix remodeling, actin cytoskeleton assembly and focal adhesion turnover. A combination of these three functions of Alix explains its crucial role in regulating spread and aligned fibroblast morphology. ^
Resumo:
In eukaryotic cells, the ESCRTs (endosomal sorting complexes required for transport) machinery is required for cellular processes such as endosomal sorting, retroviral budding and cytokinesis. The ALG-2 interacting protein Alix is a modular adaptor protein that is critically involved in these ESCRTs-associated cellular processes and consists of an N-terminal Bro1 domain, a middle V domain and C-terminal Pro-rich domain (PRD). In these cellular processes, Alix interacts with the ESCRT-III component CHMP4 at the Bro1 domain, with HIV-1 p6 Gag or EIAV p9Gag at the V domain, and with the ESCRT-I component TSG101 at the Pro-rich domain. Here we demonstrate that the N-terminal Bro1 domain forms an intramolecular interaction with C-terminal PRD within Alix. This Bro1-PRD intramolecular interaction forms a closed conformation of Alix that autoinhibits Alix interaction with all of these partner proteins. Moreover, the binding of Ca2+-activated ALG-2 to the PRD of Alix relieves the autoinhibitory intramolecular interaction, resulting in an open conformation of Alix which is able to interact with all of these partner proteins. The partner proteins bound to Alix in turn maintain Alix in the open conformation after ALG-2 dissociation with Alix. Consistent with the effect of Ca2+-activated ALG-2 on opening/activating Alix in these ESCRTs-associated functions, ALG-2 overexpression accelerates EGF-induced degradation of EGFR in an Alix-dependent manner. These findings discover an intrinsic autoinhibitory mechanism of Alix and a two-step process to activate/open Alix and then keep Alix active/open. This study has solved long-standing issues on the regulations of Alix in ESCRTs-associated functions and the role of ALG-2-Alix interaction, and may serve as the structural basis for further studies about Alix regulations. ^
Resumo:
Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is a heparin/heparan sulfate (Hp/HS) binding protein found in many adult human tissues. Potential functions of this protein are promotion of embryo adhesion, modulation of blood coagulation, and control of cell growth. While these activities are diverse, the ability of human HIP/L29 to interact with Hp/HS at the cell surface may be a unifying mechanism of action since Hp/HS influences all of these processes. A murine ortholog has been identified that has 78.8% homology over the entire sequence and identity over the N-terminal 64 amino acids when compared to human HIP/L29. Northern, Western, and immunohistochemical analysis shows that murine HIP/L29 mRNA and protein are expressed in a tissue specific manner. Murine HIP/L29 is enriched in the membrane fraction of NmuMG cells where it is eluted with high salt, suggesting that it is a peripheral membrane protein. The ability of murine HIP/L29 to bind Hp is verified by studies using native and recombinant forms of murine HIP/L29. A synthetic peptide (HIP peptide-2) derived from the identical N-terminal region of HIP/L29 proteins was tested for the ability to bind Hp and support cell adhesion. This peptide was chosen because it conforms to a proposed consensus sequence for Hp/HS binding peptides. HIP peptide-2 binds Hp in a dose-dependent, saturable, and selective manner and supports Hp-dependent cell adhesion. However, a scrambled form of this peptide displayed similar activities indicating a lack of peptide sequence specificity required for activity. Lastly, an unbiased approach was used to identify sequences within human and mouse HIP/L29 proteins necessary for Hp/HS binding. A panel of recombinant proteins was made that collectively are deficient in every human HIP/L29 domain. The activities of these deletion mutants and recombinant murine HIP/L29 were compared to the activity of recombinant human HIP/L29 in a number of assays designed to look at differences in the ability to bind Hp/HS. These studies suggest that each domain within human HIP/L29 is important for binding to Hp/HS and divergences in the C-terminus of human and mouse HIP/L29 account for a decrease in murine HIP/L29 affinity for Hp/HS. It is apparent that multiple domains within human and mouse HIP/L29 contribute to the function of Hp/HS binding. The interaction of multiple HIP/L29 domains with Hp/HS will influence the biological activity of HIP/L29 proteins. ^