4 resultados para FABRIC-EVOKED PRICKLE

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^