2 resultados para Extractable
em DigitalCommons@The Texas Medical Center
Resumo:
Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^
Resumo:
The nucleus of a eukaryotic cell contains both structural and functional elements that contribute to the controlled operation of the cell. In this context, functional components refers to those nuclear constituents that perform metabolic activities such as DNA replication and RNA transcription. Structural nuclear components, designated nuclear matrix, organize the DNA into loops or domains and appear to provide a framework for nuclear DNA organization. However, the boundary between structural and functional components is not clear cut as evinced by reports of associations between metabolic functions and the nuclear matrix. The studies reported here attempt to determine the relationship of another nuclear function, DNA repair, to the nuclear matrix.^ One objective of these studies was to study the initiation of DNA repair by directly measuring the UV-incision activities in human cells and determine the influence of various extractable nuclear components on these activities. The assay for incision activities required the development of a nuclear isolation protocol that produced nuclei with intact DNA; the conformation of the nuclear DNA and its physical characteristics in response to denaturing conditions were determined.^ The nuclei produced with this protocol were then used as substrates for endogenous UV-specific nuclease activities. The isolated nuclei were shown to contain activities that cause breaks in nuclear DNA in response to UV-irradiation. These UV-responsive activities were tightly associated with nuclear components, being unextractable with salt concentration of up to 0.6 M.^ The tight association of the incision activities with salt-extracted nuclei suggested that other repair function might also be associated with salt-stable components of the nucleus. The site of unscheduled DNA synthesis (UDS) was determined in salt-extracted nuclei (nucleoids) using autoradiography and fluorescent microscopy. UDS was found to occur in association with the nuclear matrix following low-doses (2.55 J/M('2)) of ultraviolet light, but the association became looser after higher doses of ultraviolet light (10-30 J/m('2)). ^