3 resultados para Externalization
em DigitalCommons@The Texas Medical Center
Resumo:
Programmed cell death is characterized by tightly controlled temporal and spatial intracellular Ca2+ responses that regulate the release of key proapoptotic proteins from mitochondria to the cytosol. Since apoptotic cells retain their ability to exclude membrane impermeable dyes, it is possible that the cells evoke repair mechanisms that, similar to those in normal cells, patch any damaged areas of the plasma membrane that preclude dye permeation. One critical distinction between plasma membrane repair in normal and apoptotic cells is the preservation of membrane lipid asymmetry. In normal cells, phosphatidylserine (PS) retains its normal asymmetric distribution in the inner membrane leaflet. In apoptotic cells, PS redistributes to the outer membrane leaflet by a Ca2+ dependent mechanism where it serves as a recognition ligand for phagocytes(1). In this study Ca 2+-specific fluorescent probes were employed to investigate the source of Ca2+ required for PS externalization. Experiments employing Rhod2-AM, calcium green 1, fura2-AM and the aqueous space marker FITC-dextran, demonstrated that exogenous Ca2+ imported with endocytotic vesicles into the cell was released into the cytosol in an apoptosis dependent manner. Labeling of the luminal side of the endocytotic vesicles with FITC-annexin 5, revealed that membrane lipid asymmetry was disrupted upon endosome formation. Specific labeling of the lysosomal luminal surface with the non-exchangeable membrane lipid probe, N-rhodamine-labeled-phosphatidylethanolamine (N-Rho-PE) and the lysosomal specific probe, lysotracker green, facilitated real-time monitoring of plasma membrane-to-endosome-to-lysosome transitions. Enforced elevation of cytosolic [Ca2+] with ionophore resulted in the redistribution of N-Rho-PE and PS from the inner membrane leaflet to the PM outer membrane leaflet. Identical results were obtained during apoptosis, however, the redistribution of both N-RhoPE and PS was dependent on the release of intra-lysosomal Ca2+ to the cytosol. Additional experiments suggested that lipid redistribution was dependent on the activity of lysosomal phospholipase A2 activity since lipid trafficking was abolished in the presence of chloroquine and lipase inhibitors. These data indicate that endosomal/lysosomal Ca2+ and the fusion of hybrid organelles to the plasma membrane regulates the externalization of PS during apoptosis. ^
Resumo:
To study the fate of the yolk glycoproteins found in eggs and embryos of the sea urchin, S. purpuratus, a polyclonal antibody to a 90-kDa polymannose glycoprotein was prepared. lmmunoblot analysis of total proteins over the course of development showed that this antibody recognized a family of glycoproteins. Concomitant with the disappearance of the major 160-kDa egg yolk glycoprotein during embryogenesis, glycoproteins with a lower molecular mass appeared. These glycoproteins (115, 108, 90, 83, and 68 kDa) were purified and peptide mapping revealed that they were cleavage products derived from the major yolk glycoprotein. The antibody identified a homologous set of yolk glycoproteins with similar molecular masses in the embryos of three other species in the class Echinoidea: L. pictus, A. punctulata, and D. excentricus. However, eggs from other echinoderm classes and from chicken, frog, fruit fly, and nematode did not contain any cross-reactive molecules. Cross-reactivity within the class Echinoidea was not due to a common carbohydrate epitope, because the antibody recognized the glycoproteins even after the N-linked, polymannose carbohydrate side chains were enzymatically removed. The major yolk glycoprotein (160-170 kDa) from each of the three sea urchin species was purified and analyzed, revealing striking similarities in pI and in amino acid and monosaccharide composition. Peptide mapping showed that the 160-kDa glycoprotein from the four echinoids are structurally homologous. The major yolk glycoprotein appeared to be proteolyzed by a thiol protease, which could be activated in yolk particles prepared from unfertilized eggs by low pH. Immunolocalization by electron microscopy in S. purpuratus showed that the yolk glycoproteins remained within the yolk platelet throughout embryonic development, and that externalization of the glycoproteins was not detectable. The yolk glycoprotein precursor began to be synthesized in premetamorphosis larvae, and continued in adult males and females. Both the yolk glycoproteins and the yolk platelets disappeared during larval development. This disappearance has special significance because there were no yolk proteins in the direct developing sea urchin, H. erthryogramma, which bypasses larval development and metamorphoses directly into an adult. ^
Resumo:
Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^