4 resultados para Expense caloric
em DigitalCommons@The Texas Medical Center
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.
Resumo:
Food insecurity (FI) affects millions of people in the United States and is associated with medical problems, as well as poorer physical and emotional-behavioral adjustment. Failure to thrive is a condition where children fail to gain an appropriate amount of weight, and it can cause long-term effects on cognitive and psychomotor development. While the extent to which FI may contribute to FTT is unclear, FI may contribute both directly through inadequate caloric or nutrient intake and indirectly through increased family stress, parental depression and a chaotic family environment. We present an overview of how FI and FTT may interact, followed by a case study from our multidisciplinary clinic for children with FTT. The importance of screening for FI as well as FTT is discussed. We describe ways for individuals, organizations, and agencies to help reduce the effects of FI in both individuals and their communities.
Resumo:
This research examines the graduation rate experienced by students receiving public education services in the state of Texas. Special attention is paid to that subgroup of Texas students who meet Texas Education Agency criteria for handicapped status. The study is guided by two research questions: What are the high school completion rates experienced by handicapped and nonhandicapped students attending Texas public schools? and What are the predictors of graduation for handicapped and nonhandicapped students?^ In addition, the following hypotheses are explored. Hypothesis 1: Handicapped students attending a Texas public school will experience a lower rate of high school completion than their nonhandicapped counterparts. Hypothesis 2: Handicapped and nonhandicapped students attending school in a Texas public school with a budget above the median budget for Texas public schools will experience a higher rate of high school completion than similar students in Texas public schools with a budget below the median budget. Hypothesis 3: Handicapped and nonhandicapped students attending school in large Texas urban areas will experience a lower rate of high school completion than similar students in Texas public schools in rural areas. Hypothesis 4: Handicapped and nonhandicapped students attending a Texas public school in a county which rates above the state median for food stamps and AFDC recipients will experience a lower rate of high school completion than students living in counties below the median.^ The study will employ extant data from the records of the Texas Education Agency for the 1988-1989 and the 1989-1990 school years, from the Texas Department of Health for the years of 1989 and 1990, and from the 1980 Census.^ The study reveals that nonhandicapped students are graduating with a two year average rate of.906, while handicapped students following an Individualized Educational Program (IEP) achieve a two year average rate of.532, and handicapped students following the regular academic program present a two year average graduation rate of only.371. The presence of other handicapped students, and the school district's average expense per student are found to contribute significantly to the completion rates of handicapped students. Size groupings are used to elucidate the various impacts of these variables on different school districts and different student groups.^ Conclusions and implications are offered regarding the need to reach national consensus on the definition and computation of high school completion for both handicapped and nonhandicapped students, and the need for improved statewide tracking of handicapped completion rates. ^
Resumo:
Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^