2 resultados para Excitonic binding energy
em DigitalCommons@The Texas Medical Center
Resumo:
Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.
Resumo:
Human placental lactogen (hPL) is a 22,000 dalton protein hormone produced in the placenta. The physiological actions of hPL are not well understood but its major activity is to regulate both maternal and fetal metabolism. hPL stimulates maternal lipolysis increasing free fatty acids in the maternal blood, allowing their use as an energy source by the mother, and sparing glucose for the fetus. It may also act as a growth promoting hormone for the fetus. hPL is produced in increasing amounts as pregnancy progresses. At term, hPL accounts for 10% of protein and 5% of total RNA in the placenta. This high level of hPL production is tissue-specific, as hPL is only produced in the placenta by syncytiotrophoblast cells.^ The objective of this work was to understand the mechanism by which such high levels of hPL are produced in a tissue-specific manner. A transcriptional enhancer found 2.2 kb 3$\sp\prime$ to one of the hPL genes (hPL$\sb3$) may explain the regulation of hPL expression. Transient transfection experiments using the hPL-producing human choriocarcinoma cell line JEG-3 localized the hPL enhancer to a 138 bp core element. This 138 bp sequence was found to be tissue specific in its actions as it did not promote transcription in heterologous cell lines. Gel mobility shift assays showed the hPL enhancer interacts specifically with nuclear proteins unique to hPL-producing cells. Within the 138 bp enhancer a 22 bp region was shown to be protected from DNase I digestion due to binding of proteins derived from placental nuclear extracts. Proteins binding this region of the enhancer may be instrumental in the tissue specific activity of the hPL enhancer. ^