8 resultados para Event-trigger

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin filament regulation of muscle contraction is a calcium dependent process mediated by the Tn complex. Calcium is released into the sarcomere and is bound by TnC. The subsequent conformation change in TnC is thought to begin a cascade of events that result in the activation of the actin-myosin ATPase. While the general events of this cascade are known, the molecular mechanisms of this signal transduction event are not. Recombinant DNA techniques, physiological and biochemical studies have been used to localize and characterize the structural domains of TnC that play a role in the calcium dependent signal transduction event that serves to trigger muscle contraction. The strategy exploited the observed functional differences between the isoforms of TnC to map regions of functional significance to the proteins. Chimeric cardiac-skeletal TnC proteins were generated to localize the domains of TnC that are required for maximal function in the myofibrilar ATPase assay. Characterization of these regions has yielded information concerning the molecular mechanism of muscle contraction. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite vast research efforts since Cajal's seminal thoughts on the adaptation of the nervous system, researchers have only recently begun to understand the diversity of forms of neuronal plasticity and its mechanisms. All known forms of activity-dependent neuronal plasticity utilize alterations in [Ca 2+]i as a signal of changes in the membrane voltage. Ca 2+ sensors trigger modifications in excitability or synaptic strength that last from seconds to weeks and presumably years. Intriguingly, Kunjilwar et al., (unpublished observations) discovered in peripheral sensory axons of Aplysia that the induction of depolarization-dependent long-term axonal hyperexcitability does not require Ca2+ transients. Here we show that induction of depolarization-dependent intermediate-term and long-term synaptic potentiation in Aplysia occurs in conditions that prevent Ca2+ entry through voltage-gated channels and elevation of [Ca2+]i. We found that the intermediate-term synaptic potentiation induced under conditions expected to prevent Ca 2+ transients is associated with increased excitability of sensory neuron axons near presynaptic terminals, suggesting that the synaptic potentiation involves a presynaptic locus. The Ca2+-independent intermediate- and long-term synaptic potentiation appeared similar to previously reported Ca2+-dependent modifications in Aplysia. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection by human immunodeficiency virus type 1 (HIV-1) is a multi-step process, and detailed analyses of the various events critical for productive infection are necessary to clearly understanding the infection process and identifying novel targets for therapeutic interventions. Evidence from this study reveals binding of the viral envelope protein to host cell glycosphingolipids (GSLs) as a novel event necessary for the orderly progression of the host cell-entry and productive infection by HIV-1. Data obtained from co-immunoprecipitation analyses and confocal microscopy showed that the ability of viral envelope to interact with the co-receptor CXCR4 and productive infection of HIV-1 were inhibited in cells rendered GSL-deficient, while both these activities were restored after reconstitution of the cells with specific GSLs like GM3. Furthermore, evidence was obtained using peptide-inhibitors of HIV-1 infection to show that binding of a specific region within the V3-loop of the envelope protein gp120 to the host cell GSLs is the trigger necessary for the CD4-bound gp120 to recruit the CXCR4 co-receptor. Infection-inhibitory activity of the V3 peptides was compromised in GSL-deficient cells, but could be restored by reconstitution of GSLs. Based on these findings, a revised model for HIV-1 infection is proposed that accounts for the established interactions between the viral envelope and host cell receptors while enumerating the importance of the new findings that fill the gap in the current knowledge of the sequential events for the HIV-1 entry. According to this model, post-CD4 binding of the HIV-1 envelope surface protein gp120 to host cell GSLs, mediated by the gp120-V3 region, enables formation of the gp120-CD4-GSL-CXCR4 immune-complex and productive infection. The identification of cellular GSLs as an additional class of co-factors necessary for HIV-1 infection is important for enhancing the basic knowledge of the HIV-1 entry that can be exploited for developing novel antiviral therapeutic strategies. ^