35 resultados para Estrogen Receptor Gene

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Assessment of estrogen receptor (ER) expression has inconsistent utility as a prognostic marker in epithelial ovarian carcinoma. In breast and endometrial cancers, the use of estrogen-induced gene panels, rather than ER expression alone, has shown improved prognostic capability. Specifically, over-expression of estrogen-induced genes in these tumors is associated with a better prognosis and signifies estrogen sensitivity that can be exploited with hormone antagonizing agents. It was therefore hypothesized that estrogen-induced gene expression in ovarian carcinoma would successfully predict outcomes and differentiate between tumors of varying estrogen sensitivities. Methods. Two hundred nineteen (219) patients with ovarian cancer who underwent surgery at M. D. Anderson between 2004 and 2007 were identified. Of these, eighty-three (83) patients were selected for inclusion because they had advanced stage, high-grade serous carcinoma of the ovary or peritoneum, had not received neoadjuvant chemotherapy, and had readily available frozen tissue for study. All patients had also received adjuvant treatment with platinum and taxane agents. The expression of seven genes known to be induced by estrogen in the female reproductive tract (EIG121, sFRP1, sFRP4, RALDH2, PR, IGF-1, and ER) was measured using qRT-PCR. Unsupervised cluster analyses of multiple gene permutations were used to categorize patients as high or low estrogen-induced gene expressors. QPCR gene expression results were then compared to ER and PR immunohistochemical (IHC) expression. Cox proportional hazards models were used to evaluate the effects of both individual genes and selected gene clusters on patient survival. Results. Median follow-up time was 38.7 months (range 1-68 months). In a multivariate model, overall survival was predicted by sFRP1 expression (HR 1.10 [1.02-1.19], p=0.01) and EIG121 expression (HR 1.28 [1.10-1.49], p<0.01). A cluster defined by EIG121 and ER was further examined because that combination appeared to reasonably segregate tumors into distinct groups of high and low estrogen-induced gene expressors. Shorter overall survival was associated with high estrogen-induced gene expressors (HR 2.84 [1.11-7.30], p=0.03), even after adjustment for race, age, body mass index, and residual disease at debulking. No difference in IHC ER or PR expression was noted between gene clusters. Conclusion. In sharp contrast to breast and endometrial cancers, high estrogen-induced gene expression predicts shorter overall survival in patients with high-grade serous ovarian carcinoma. An estrogen-induced gene biomarker panel may have utility as prognostic indicator and may be useful to guide management with estrogen antagonists in this population.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arginine methylation has been implicated in the regulation of gene expression. The coactivator-associated arginine methyltransferase 1 (CARMI/PRMT4) binds the p160 family of steroid receptor coactivators (SRCs). This association enhances transcriptional activation by nuclear receptors. Here, we generated and characterized CARM1 knockout mice. Embryos with a targeted disruption of CARM1 are 35% smaller in size than the wild-type littermates and die perinatally. We also generated Carm1-/- and Carm1+/+ mouse embryonic fibroblasts and tested gene expression in response to estrogen. Estrogenresponsive gene expression was aberrant in Carm1-/- fibroblasts and embryos, thus emphasizing the role of arginine methylation as a transcription activation tag. We subsequently studied the role of CARM1 in estrogen signaling in viva in the mammary gland. Conditional knockout of CARM1 in mammary gland and Carml-1-embryonic mammary anlagen transplant experiments did not show any defects in growth and development of the glands. To further dissect the role of CARM1 in estrogen receptor mediated transactivation, we performed cDNA microarray and serial analysis of gene expression on Carm1-/- and Carm1+/+ embryos treated with the estrogen analog, DES. Our results indicate global changes in estrogen regulated genes as well as genes involved in lipid homeostasis. Marker genes for Peroxisome Proliferator Activated Receptor γ (PPARγ) activity, adipsin and aP2, are downregulated in the Carm1-/- embryos. Furthermore, OCT frozen sections of 18.5dpc embryos, processed simultaneously for oil red O staining to look for neutral fat, reveals greatly reduced brown fat accumulation in the Carm1-/- embryos in contrast to wild-type and gain-of-function Carm1 transgenic (ubiquitous) embryo. We used a well-established 3T3-L1 preadipocyte cell line to knockdown CARM1 by short hairpin RNA. 3T3-L1 cells with CARM1 knockdown showed greatly reduced potential to differentiate into mature lipid accumulating adipocytes upon administration of adipogenic stimuli. Ligand-dependent activation of reporter genes by the PPARγ receptor showed that PPRE-luciferase reporter activity was enhanced in the presence of CARM1, additionally, luciferase activity was reduced to background levels when enzyme dead CARM1 (CARM1-VLD) was used. Thus, in this study, we have identified novel pathways that use CARM1 as coactivator and showed that CARM1 functions as a key component of PPARγ receptor mediated gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclosporine A (CSA) is a cyclic eleven amino acid, lipophilic molecule used therapeutically as an immunosuppressive agent. Cyclosporine can specifically inhibit the transcription of a number of different genes. It is known that CSA is bound almost exclusively to lipoproteins in plasma, however, the relationship between the low density lipoprotein (LDL), the LDL receptor, and CSA has not been fully elucidated. The exact mechanism of cellular uptake of CSA is unknown, but it is believed to be by simple passive diffusion across the cell membrane. In addition, it has been recently shown that the frequent finding of hypercholesterolemia seen in patients treated with CSA can be explained by a CSA-induced effect. The mechanism by which CSA induces hypercholesterolemia is not known. We have used an LDL receptor-deficient animal model, the Watanabe Heritable Hyperlipidemic (WHHL) rabbit to investigate the role of LDL and the LDL receptor in the cellular uptake of CSA. Using this animal model, we have shown that CSA uptake by lymphocytes is predominantly LDL receptor-mediated. Chemical modification of apoB-100 on LDL particles abolishes their ability to bind to the LDL receptor. When CSA is incubated with modified LDL much less is taken-up than when native LDL is incubated with CSA. Treatment of two human cell lines with CSA results in a dose-dependent decrease in LDL receptor mRNA levels. Using a novel transfection system involving the 5$\sp\prime$-flanking region of the LDL receptor gene, we have found that CSA decreases the number of transcripts, but is dependent on whether or not cholesterol is present and the stage of growth of the cells. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estrogens have been implicated in the normal and neoplastic development of the mammary gland. Although estradiol is essential for early mammary differentiation, its role in postnatal ductal morphogenesis is poorly defined. We have found that neonatal estradiol exposure promotes precocious ductal outgrowth and terminal end bud formation in 21 day-old female mice. In contrast to this precocious phenotype, day 21 estradiol-treated epithelium, transplanted into control host fatpads, grows more slowly than control epithelium. Western and immunohistochemical (IHC) analyses indicate that neonatally-estrogenized glands have significantly less total ER than controls at days 7 and 21, and significantly more stromal ER at day 35. Estrogen receptor α (ER) is present in the gland when treatment is initiated at day 1. We propose that the premature activation of ER by neonatal estradiol exposure, during this critical perinatal period, is a key factor in the alteration of mammary growth and ER expression. ^ To address the role of ER function in mammary morphogenesis, we have developed an in vitro system to study the effect of estradiol exposure in vivo. Keratin and ER-positive mammary epithelial cell lines from 7, 21 and 35 day-old oil or estradiol treated mice have been established. Cell lines derived from estradiol-treated mice grow significantly slower than cells from control glands. Although the level of ER expressed by each cell line is correlated to its rate of growth, epithelial growth in vitro is estradiol-independent and antiestrogen-insensitive. Estradiol-induced transcription from an ERE-reporter in transiently-transfected cell lines confirms the functionality of the ER detected by western and IHC. However, there are no differences in estradiol-stimulated transcription between cell lines. ^ In conclusion, neonatal estradiol treatment alters the pattern of ER expression in mammary epithelial and stromal cells in vivo, and the growth of mammary epithelial cells in vivo and in vitro. When grown outside of the estrogenized host, exposed epithelium grows more slowly than the control. Therefore, an extra-epithelial factor is necessary for enhanced epithelial growth. Our model, which couples an in vivo-in vitro approach, can be used in the future to identify factors involved in the period of early mammary outgrowth and carcinogen susceptibility. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Eker rat model has allowed researchers the unique opportunity to study the tumorigenesis of spontaneously occurring uterine leiomyoma. Animals in this line harbor a germline mutation in the tuberous sclerosis complex-2 (Tsc-2) tumor suppressor gene and develop uterine leiomyomas at a rate of ∼65%. Primary leiomyomas obtained from humans and Eker rats along with Eker-derived leiomyoma cell lines were used in studies described herein to determine the effect of PPARγ ligand treatment on the proliferation of this cell type and to determine the role of tuberin and p27Kip1 in the etiology of this tumor type. Treatment of leiomyoma cells of human and rat origin with PPARγ-activating compounds resulted in decreased proliferation. Additionally, PPARγ ligands inhibited estrogen-dependent gene transactivation in Eker-derived leiomyoma cells suggesting that nuclear receptor cross-talk may exist between PPAR and the ER and may be responsible for the inhibition of proliferation in this cell type. Loss of tuberin, the product of the TSC-2 gene, is associated with Eker rat leiomyoma development while the role of this tumor suppressor in human leiomyoma development is unknown. Data herein show that tuberin expression is diminished in 25% of human leiomyomas tested. Additionally, we observed diminished p27 Kip1 expression in 80% of human uterine leiomyomas compared to normal myometrium. Interestingly, the loss of tuberin expression in human leiomyoma was associated with cytoplasmic p27Kip1 accumulation in this cell type. Furthermore, tuberin-null Eker rat leiomyomas and derived cell lines had predominantly cytoplasmic p27Kip1 compared to tuberin-expressing normal myometrium. Taken together, our data show that human and Eker rat leiomyoma proliferation is inhibited upon PPARγ treatment and that the etiology of human and Eker rat leiomyoma converge at loss of p27Kip1 function. Furthermore, our data indicate that the loss of p27 Kip1 function is mediated by loss of expression (in 80% of human leiomyoma) or cytoplasmic localization potentially resulting from the loss of tuberin. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is widely accepted that the process of breast cancer tumorigenesis involves estrogen receptor-alpha (ER)-regulated stimulatory pathways, which feed into survival, cell cycle progression and proliferative response. Recent data from Kumar laboratory indicate that dynein light chain 1 (DLC1) plays a role in survival, motility and invasiveness, all of which are required for a successful tumorigenesis process. In the present research, we have discovered a mechanistic bidirectional regulatory link between the DLC1 and ER. We found that DLC1 facilitates ligand-induced ER transactivation involving the recruitment of the DLC1-ER complex to ER-target genes. To gain insights into the mechanism by which DLC1 regulates the ER pathway, we set out to identify novel DLC1-interacting proteins. Among other proteins, we identified KIBRA and Ciz1 as two novel DLC1-interacting proteins. We found that the KIBRA-DLC1 complex is recruited to ER-responsive promoters, and that KIBRA-DLC1 interaction is needed for the recruitment of ER to its targets as well as for ER's transactivation function. Finally, we found that KIBRA utilizes its histone H3interacting glutamic acid-rich region to regulate the transactivation activity of ER. During the course of this work, we also discovered that DLC1 interacts with Cdk2 and Ciz1, and such interactions play a direct accelerating role in the G1-S transition of breast cancer cells. While delineating the role of Ciz1 in hormone-responsive cancer cells, we found that Ciz1 is an estrogen-responsive gene, and acts as a co-regulator of ER. Accordingly, Ciz1 overexpression in breast cancer cells conferred estrogen hypersensitivity, promoted the growth-rate, anchorage-independency and tumorigenic properties. Collectively, findings made during the course of the present dissertation research introduced two new molecular players in the action of ER in breast cancer cells, with a particular focus on cell cycle progression and ER-chromatin target regulation. In addition, findings presented here provide novel mechanistic insight about the contribution of DLC1 and its interacting proteins in amplifying the hormone action and promoting the process of breast cancer tumorigenesis. ^