46 resultados para Estrogen Receptor, Breast Cancer, Molecular Epidemiology

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The chief goal of this study was to analyze copy number variation (CNV) in breast cancer tumors from 25 African American women with early stage breast cancer (BC) using molecular inversion probes (MIP) in order to: (1) compare the degree of CNV in tumors compared to normal lymph nodes, and (2) determine whether gains and/or losses of genes in specific chromosomes differ between pathologic subtypes of breast cancer defined by known prognostic markers, (3) determine whether gains/losses in CN are associated with known oncogenes or tumor suppressor genes, and (4) determine whether increased gains/losses in CN for specific chromosomes were associated with differences in breast cancer recurrence. ^ Methods. Twenty to 37 nanograms of DNA extracted from 25 formalin-fixed paraffin embedded (FFPE) tumor samples and matched normal lymph nodes were added to individual tubes. Oligonucleotide probes with recognition sequences at each terminus were hybridized with a genomic target sequence to form a circular structure. Probes are released from genomic DNA obtained from FFPE samples, and those which have been correctly "circularized" in the proper allele/nucleotide reaction combination are amplified using polymerase chain reaction (PCR) primers. Amplicons were fluorescently labeled and the tag sequences released from the genome homology regions by treatment with uracil-N-glycosylase to cleave the probe at the site where uracils are present, and detected using a complementary tag array developed by Affymetrix. ^ Results. Analysis of CN gains and losses from tumors and normal tissues showed marked differences in tumors with numerous chromosomes affected. Similar changes were not observed in normal lymph nodes. When tumors were stratified into four groups based on expression or lack of expression of the estrogen receptor and HER2/neu, distinct patterns of CNV for different chromosomes were observed. Gains or losses in CN for specific chromosomes correlated with amplifications/deletions of particular oncogenes or tumor suppressor genes (i.e. such as found on chromosome 17) known to be associated with aggressive tumor phenotype and poor prognosis. There was a trend for increases in CN observed for chromosome 17 to correlate inversely with time to recurrence of BC (p=0.14 for trend). CNV was also observed for chromosomes 5, 8, 10, 11, and 16, which are known sites for several breast cancer susceptibility alleles. ^ Conclusions. This study is the first to validate the MIP technique, to correlate differences in gene expression with known prognostic tumor markers, and to correlate significant increases/decreases in CN with known tumor markers associated with prognosis. The results of this study may have far reaching public health implications towards identifying new high-risk groups based on genomic differences in CNP, both with respect to prognosis and response to therapy, and to eventually identify new therapeutic targets for prevention and treatment of this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer diagnosis and second leading cause of death in women. Risk factors associated with breast cancer include: increased age, alcohol consumption, cigarette smoking, white race, physical inactivity, benign breast conditions, reproductive and hormonal factors, dietary factors, and family history. Hereditary breast and ovarian cancer syndrome (HBOC) is caused by mutations in the BRCA1 and BRCA2 genes. Women carrying a mutation in these genes are at an increased risk to develop a second breast cancer. Contralateral breast cancer is the most common second primary cancer in patients treated for a first breast cancer. Other risk factors for developing contralateral breast cancer include a strong family history of breast cancer, age of onset of first primary breast cancer, and if the first primary was a lobular carcinoma, which has an increased risk of being bilateral. A retrospective chart review was performed on a select cohort of women in an IRB approved database at MD Anderson Cancer Center. The final cohort contained 572 women who tested negative for a BRCA1 or BRCA2 mutation, had their primary invasive breast cancer diagnosed under the age of 50, and had a BRCAPro risk assessment number over 10%. Of the 572 women, 97 women developed contralateral breast cancer. A number of predictors of contralateral breast cancer were looked at between the two groups. Using univariable Cox Proportional Hazard model, thirteen statistically interesting risk factors were found, defined as having a p-value under 0.2. Multivariable stepwise Cox Proportional Hazard model found four statistically significant variables out of the thirteen found in the univariable analysis. In our study population, the incidence of contralateral breast cancer was 17%. Four statistically significant variables were identified. Undergoing a prophylactic mastectomy was found to reduce the risk of developing contralateral breast cancer, while not having a prophylactic mastecomy, a young age at primary diagnosis, having a positive estrogen receptor status of the primary tumor, and having a family history of breast cancer increased a woman’s risk to develop contralateral breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% (1.38 million) of the total new cancer cases and 14% (458,400) of the total cancer deaths in 2008. [1] Triple-negative breast cancer (TNBC) is an aggressive phenotype comprising 10–20% of all breast cancers (BCs). [2-4] TNBCs show absence of estrogen, progesterone and HER2/neu receptors on the tumor cells. Because of the absence of these receptors, TNBCs are not candidates for targeted therapies. Circulating tumor cells (CTCs) are observed in blood of breast cancer patients even at early stages (Stage I & II) of the disease. Immunological and molecular analysis can be used to detect the presence of tumor cells in the blood (Circulating tumor cells; CTCs) of many breast cancer patients. These cells may explain relapses in early stage breast cancer patients even after adequate local control. CTC detection may be useful in identifying patients at risk for disease progression, and therapies targeting CTCs may improve outcome in patients harboring them. Methods . In this study we evaluated 80 patients with TNBC who are enrolled in a larger prospective study conducted at M D Anderson Cancer Center in order to determine whether the presence of circulating tumor cells is a significant prognostic factor in relapse free and overall survival . Patients with metastatic disease at the time of presentation were excluded from the study. CTCs were assessed using CellSearch System™ (Veridex, Raritan, NJ). CTCs were defined as nucleated cells lacking the presence of CD45 but expressing cytokeratins 8, 18 or 19. The distribution of patient and tumor characteristics was analyzed using chi square test and Fisher's exact test. Log rank test and Cox regression analysis was applied to establish the association of circulating tumor cells with relapse free and overall survival. Results. The median age of the study participants was 53years. The median duration of follow-up was 40 months. Eighty-eight percent (88%) of patients were newly diagnosed (without a previous history of breast cancer), and (60%) of patients were chemo naïve (had not received chemotherapy at the time of their blood draw for CTC analysis). Tumor characteristics such as stage (P=0.40), tumor size (P=69), sentinel nodal involvement (P=0.87), axillary lymph node involvement (P=0.13), adjuvant therapy (P=0.83), and high histological grade of tumor (P=0.26) did not predict the presence of CTCs. However, CTCs predicted worse relapse free survival (1 or more CTCs log rank P value = 0.04, at 2 or more CTCs P = 0.02 and at 3 or more CTCs P < 0.0001) and overall survival (at 1 or more CTCs log rank P value = 0.08, at 2 or more CTCs P = 0.01 and at 3 or more CTCs P = 0.0001. Conclusions. The number of circulating tumor cells predicted worse relapse free survival and overall survival in TNBC patients.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Inflammatory breast cancer (IBC) is rare and accounts for 2.5% of all invasive breast cancers. The 5-year survival rates are significantly lower than for other types of breast cancer, highlighting the significance of cancer prevention in IBC. The comprehensive multi-disciplinary team Morgan Welch Inflammatory Breast Cancer Research Program and Clinic at University of Texas MD Anderson Cancer Center treats the largest number of Inflammatory Breast patients in a single center. Because of this unique center, large patient resources, and good medical and epidemiological records, we were able to conduct the largest single center case-control and case-case study on IBC. Methods: We identified 246 patients diagnosed with IBC and 397 cancer free patients seen at the Dan L Duncan Cancer Prevention Clinic. Breast cancer reproductive risk factors and lifestyle risk factors were compared between tumor subtypes of IBC patients (Estrogen Receptor positive (ER+) and/or Progesterone Receptor positive (PR+), Human Epidermal Growth Factor 2 positive (HER2+)), and (ER -/PR-/HER2-)) and cancer free controls. Results: Breastfeeding was the only significant risk factor (p<0.01) between tumor subtypes in IBC patients. In the case-control study that included all IBC patients and cancer free patients the descriptive statistics indicate significant difference in BMI, history of smoking, number of children, age of first pregnancy, any breastfeeding and total time breastfeeding (p<0.05). No differences were found in the frequency of other breast cancer risk factors. Conclusion: The associations determined between cancer free controls and IBC patients have identified previously unknown risk factors for IBC. The risk factors identified by the case control study suggest BMI, history of smoking, and the protective effect of breastfeeding as potential modifiable risk factors that can be used to decrease the incidence of IBC. Impact: These results highlight the importance of evaluating epidemiologic risk factors of IBC, which could lead to the identification of distinct etiologic pathways that could be targeted for prevention.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of c-erbB-2 gene-encoded p185 has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. To investigate whether overexpression of c-erbB-2 can enhance metastatic potential of human breast cancer cells, we compared the metastatic phenotypes of the parental MDA-MB-435 cells and the c-erbB-2 gene transfected 435.eB cells. In vivo experimental metastasis assays demonstrated that mice injected erbB2-overexpressing 435.eB transfectants formed significantly more metastatic tumors than the mice injected with parental and control cells. The changes in metastatic potential in vivo were accompanied by increased invasiveness in vitro . The transfectants and the parental cells all had similar growth rates and transformation potential. These findings suggest that c- erbB-2 gene can enhance the intrinsic metastatic potentials of MDA-MB-435 cells without increasing their transformation abilities. ^ Homophilic adhesion may affect invasive and metastatic potential of tumor cells. We found that Heregulin-β1 (HRG-β1), a growth factor that activates receptor kinases erbB3 and erbB4, can enhance aggregation of MCF-7 and SKBR3 human breast cancer cells. While investigating the downstream signals involved in HRG-β1-increased cell aggregation, we observed that HRG-β1 increased the kinase activities of extracellular signal-regulated protein kinase (ERK) and PI3K in these cells. By using different kinase inhibitors, we found that the HRG-β1-activated MEK1-ERK pathway has no demonstrable role in the induction of cell aggregation, whereas HRG-β1-activated PI3K is required for enhancing breast cancer cell aggregation. These results have provided one mechanism by which HRG-β1-activated signaling of erbB receptors may affect invasive/metastatic properties of breast cancer cells. ^ To identify the structural motifs within the erbB2 receptor that are required for erbB2 increased metastatic potential in breast cancer cells, we injected different forms of mutated erbB2 expressing MDA-MB-435 cell line transfectants with or without the EGF-like domain of heregulin-β1 protein (HRG/egf) into ICR-SCID mice to test the metastatic survival rate. The results show that an intact kinase domain of erbB2 receptor is required for erbB2 enhanced metastatic potential in these cells. The C-terminal tyrosine 1248 residue of erbB2 may also play a role in enhancing metastatic potential. Moreover, the results suggest that HRG/egf promote the metastatic potential of human breast cancer cells in vivo. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer incidence and mortality rates for Hispanic women are lower than for non-Hispanic white (NHW) women, but recently rates have increased more rapidly among Hispanic women. Many studies have shown a consistent increased breast cancer risk associated with modest or high alcohol intake, but few included Hispanic women. Alcohol consumption and risk of breast cancer was investigated in a New Mexico statewide population-based case-control study. The New Mexico Tumor Registry ascertained women, newly diagnosed with breast cancer (1992–1994) aged 30–74 years. Controls were identified by random digit dialing and were frequency-matched for ethnicity, age-group, and health planning district. In-person interviews of 712 cases and 844 controls were conducted. Data were collected for breast cancer risk factors, including alcohol intake. Recent alcohol intake data was collected for a four-week period, six months prior to interview. Past alcohol intake included information on alcohol consumption at ages 25, 35, and 50. History of alcohol consumption was reported by 81% of cases and 85% of controls. Of these women, 42% of cases and 48% of controls reported recent alcohol intake. Results for past alcohol intake did not show any trend with breast cancer risk, and were nonsignificant. Multivariate-adjusted odds ratios for recent alcohol intake and breast cancer suggested an increased risk at the highest level for both ethnic groups, but estimates were unstable and statistically nonsignificant. Low level of recent alcohol intake (<148 grams/week) was associated with a reduced risk for NHW women (Odds Ratio (OR) = 0.49 95% Confidence Interval (CI) 0.35–0.69). This pattern was independent of hormone-receptor status. The reduced breast cancer risk for low alcohol intake was present for premenopausal (OR = 0.29, 95% CI 0.15–0.56) and postmenopausal NHW women (OR = 0.56, 95% CI 0.35–0.90). The possibility of an increased risk associated with high alcohol intake could not be adequately addressed, because there were few drinkers with more than light to moderate intake, especially among Hispanic women. An alcohol-estrogen link is hypothesized to be the mechanism responsible for increased breast cancer risk, but has not been consistently substantiated. More studies are needed of the underlying mechanism for an association between alcohol intake and breast cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER Midan Ai, Ph.D. Supervisory Professor: Zhen Fan, M.D. Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism needs to be determined. In my studies, I found that high expression of HER2 is correlated with high expression of Brk in breast cancer cell lines. Silencing HER2 expression via RNA interference in HER2 over-expressed breast cancer cells resulted in Brk protein decrease and overexpression of HER2 in HER2 low-expressed breast cancer cells up-regulated Brk expression. The mechanism study indicated that overexpression of HER2 increased Brk protein stability. Brk was degraded through a Ca2+-dependent protease pathway involving calpain and HER2 stimulated Brk expression via inhibiting calpain activity. Calpastatin is a calpain endogenous inhibitor and the calpain-calpastatin system has been implicated in a number of cell physiological functions. HER2 restrained calpain activation via up-regulating calpastatin expression and HER2 downstream signaling, MAPK pathway, was involved in the regulation. Furthermore, silencing of Brk expression by RNA interference in HER2-overexpressing breast cancer cells decreased HER2-mediated cell proliferation, survival, invasion/metastasis potential and increased cell sensitivity to HER2 kinase inhibitor, lapatinib, treatment, indicating that Brk plays important roles in regulating and mediating the oncogenic functions of HER2. The Stat3 pathway played important roles in Brk mediated cell survival and invasion/metastasis in the context of HER2-overexpressing breast cancer cells. However, transgenic mice with inducible expression of constitutively active Brk (CA) in the mammary epithelium failed to develop malignant change in the mammary glands after Brk induction for 15 months which indicated that expression of Brk protein alone was not sufficiently to induce spontaneous breast tumor. Bitransgenic mice with co-expression of HER2/neu and inducible expression of Brk in the mammary epithelium developed multifocal mammary tumors, but there were no significant difference in the tumor occurring time, tumor size, tumor weight and tumor multiplicity between the mouse group with co-expression of Brk and HER2/neu and the mouse group with HER2/neu expression only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.