13 resultados para Estimation of carbon,

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the same population in which mutation frequency is evaluated. We provide the statistical basis for evaluating the incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated. Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD), the two most frequent autosomal recessive disease in Caucasian populations and the two most frequent mutations (delta F508 and G985) that occur on these disease allele-bearing chromosomes, we show that, with 50-100 patients and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to rare autosomal dominant diseases for which disease-specific mutations are found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haldane (1935) developed a method for estimating the male-to-female ratio of mutation rate ($\alpha$) by using sex-linked recessive genetic disease, but in six different studies using hemophilia A data the estimates of $\alpha$ varied from 1.2 to 29.3. Direct genomic sequencing is a better approach, but it is laborious and not readily applicable to non-human organisms. To study the sex ratios of mutation rate in various mammals, I used an indirect method proposed by Miyata et al. (1987). This method takes advantage of the fact that different chromosomes segregate differently between males and females, and uses the ratios of mutation rate in sequences on different chromosomes to estimate the male-to-female ratio of mutation rate. I sequenced the last intron of ZFX and ZFY genes in 6 species of primates and 2 species of rodents; I also sequenced the partial genomic sequence of the Ube1x and Ube1y genes of mice and rats. The purposes of my study in addition to estimation of $\alpha$'s in different mammalian species, are to test the hypothesis that most mutations are replication dependent and to examine the generation-time effect on $\alpha$. The $\alpha$ value estimated from the ZFX and ZFY introns of the six primate specise is ${\sim}$6. This estimate is the same as an earlier estimate using only 4 species of primates, but the 95% confidence interval has been reduced from (2, 84) to (2, 33). The estimate of $\alpha$ in the rodents obtained from Zfx and Zfy introns is ${\sim}$1.9, and that deriving from Ube1x and Ube1y introns is ${\sim}$2. Both estimates have a 95% confidence interval from 1 to 3. These two estimates are very close to each other, but are only one-third of that of the primates, suggesting a generation-time effect on $\alpha$. An $\alpha$ of 6 in primates and 2 in rodents are close to the estimates of the male-to-female ratio of the number of germ-cell divisions per generation in humans and mice, which are 6 and 2, respectively, assuming the generation time in humans is 20 years and that in mice is 5 months. These findings suggest that errors during germ-cell DNA replication are the primary source of mutation and that $\alpha$ decreases with decreasing length of generation time. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for timely population data for health planning and Indicators of need has Increased the demand for population estimates. The data required to produce estimates is difficult to obtain and the process is time consuming. Estimation methods that require less effort and fewer data are needed. The structure preserving estimator (SPREE) is a promising technique not previously used to estimate county population characteristics. This study first uses traditional regression estimation techniques to produce estimates of county population totals. Then the structure preserving estimator, using the results produced in the first phase as constraints, is evaluated.^ Regression methods are among the most frequently used demographic methods for estimating populations. These methods use symptomatic indicators to predict population change. This research evaluates three regression methods to determine which will produce the best estimates based on the 1970 to 1980 indicators of population change. Strategies for stratifying data to improve the ability of the methods to predict change were tested. Difference-correlation using PMSA strata produced the equation which fit the data the best. Regression diagnostics were used to evaluate the residuals.^ The second phase of this study is to evaluate use of the structure preserving estimator in making estimates of population characteristics. The SPREE estimation approach uses existing data (the association structure) to establish the relationship between the variable of interest and the associated variable(s) at the county level. Marginals at the state level (the allocation structure) supply the current relationship between the variables. The full allocation structure model uses current estimates of county population totals to limit the magnitude of county estimates. The limited full allocation structure model has no constraints on county size. The 1970 county census age - gender population provides the association structure, the allocation structure is the 1980 state age - gender distribution.^ The full allocation model produces good estimates of the 1980 county age - gender populations. An unanticipated finding of this research is that the limited full allocation model produces estimates of county population totals that are superior to those produced by the regression methods. The full allocation model is used to produce estimates of 1986 county population characteristics. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data derived from 1,194 gravidas presenting at the observation unit of a city/county hospital between October 11, 1979 through December 7, 1979 were evaluated with respect to the proportion ingesting drugs during pregnancy. The mean age of the mother at the time of the interview was 22.0 years; 43.0 percent were Black; 34.0 percent Latin-American, 21.0 percent White and 2.0 percent other; mean gravida was 2.5 pregnancies; mean parity was 1.0; and mean number of previous abortions was 0.34. Completed interview data was available for 1,119 gravida, corresponding urinalyses for 997 subjects. Ninety and one-tenth percent (90.1 percent) of the subjects reported ingestion of one or more drug preparation(s) (prescription, OTC, or substances used for recreational purposes) during pregnancy with a range of 0 to 11 substances and a mean of 2.7. Dietary supplements (vitamins and minerals) were most frequently reported followed by non-narcotic analgesics. Seventy-six and one tenth percent (76.1 percent) of the population reported consumption of prescription medication, 42.5 percent reported consumption of over-the-counter medications, 45.7 percent reported consumption of a substance for recreational purposes and 4.3 percent reported illicit consumption of a substance. For selected substances, no measurable difference was found between obtaining the information from the interview method or from a urinalysis assay. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine, in the context of an economic model of health production, the relationship between inputs (health influencing activities) and fitness.^ Primary data were collected from 204 employees of a large insurance company at the time of their enrollment in an industrially-based health promotion program. The inputs of production included medical care use, exercise, smoking, drinking, eating, coronary disease history, and obesity. The variables of age, gender and education known to affect the production process were also examined. Two estimates of fitness were used; self-report and a physiologic estimate based on exercise treadmill performance. Ordinary least squares and two-stage least squares regression analyses were used to estimate the fitness production functions.^ In the production of self-reported fitness status the coefficients for the exercise, smoking, eating, and drinking production inputs, and the control variable of gender were statistically significant and possessed theoretically correct signs. In the production of physiologic fitness exercise, smoking and gender were statistically significant. Exercise and gender were theoretically consistent while smoking was not. Results are compared with previous analyses of health production. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV/AIDS is a treatable although incurable disease that presents immense challenges to those infected including physical, social and psychological effects. As of 2009, an estimated 2.4 million people were living with HIV or AIDS in India, 0.3% of the country's population. In India, it is difficult to not only treat but also to track because it is associated with socio-economic factors such as illiteracy, social biases, poor sanitation, malnutrition and social class. Nevertheless, it is important to know the prevalence of HIV/AIDS for several reasons. At the individual level, the quality of life of people living with HIV/AIDS is markedly lower than their counterparts without the disease and is associated with challenges. At the community level, it is important to identify high risk groups, monitor prevention efforts, and allocate appropriate resources to target programs for the reduction of transmission of HIV. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposed a novel statistical method that modeled the multiple outcomes and missing data process jointly using item response theory. This method follows the "intent-to-treat" principle in clinical trials and accounts for the correlation between outcomes and missing data process. This method may provide a good solution to chronic mental disorder study. ^ The simulation study demonstrated that if the true model is the proposed model with moderate or strong correlation, ignoring the within correlation may lead to overestimate of the treatment effect and result in more type I error than specified level. Even if the within correlation is small, the performance of proposed model is as good as naïve response model. Thus, the proposed model is robust for different correlation settings if the data is generated by the proposed model.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^