11 resultados para Errors in variables models
em DigitalCommons@The Texas Medical Center
Resumo:
The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^
Resumo:
Evidence for an RNA gain-of-function toxicity has now been provided for an increasing number of human pathologies. Myotonic dystrophies (DM) belong to a class of RNA-dominant diseases that result from RNA repeat expansion toxicity. Specifically, DM of type 1 (DM1), is caused by an expansion of CUG repeats in the 3'UTR of the DMPK protein kinase mRNA, while DM of type 2 (DM2) is linked to an expansion of CCUG repeats in an intron of the ZNF9 transcript (ZNF9 encodes a zinc finger protein). In both pathologies the mutant RNA forms nuclear foci. The mechanisms that underlie the RNA pathogenicity seem to be rather complex and not yet completely understood. Here, we describe Drosophila models that might help unravelling the molecular mechanisms of DM1-associated CUG expansion toxicity. We generated transgenic flies that express inducible repeats of different type (CUG or CAG) and length (16, 240, 480 repeats) and then analyzed transgene localization, RNA expression and toxicity as assessed by induced lethality and eye neurodegeneration. The only line that expressed a toxic RNA has a (CTG)(240) insertion. Moreover our analysis shows that its level of expression cannot account for its toxicity. In this line, (CTG)(240.4), the expansion inserted in the first intron of CG9650, a zinc finger protein encoding gene. Interestingly, CG9650 and (CUG)(240.4) expansion RNAs were found in the same nuclear foci. In conclusion, we suggest that the insertion context is the primary determinant for expansion toxicity in Drosophila models. This finding should contribute to the still open debate on the role of the expansions per se in Drosophila and in human pathogenesis of RNA-dominant diseases.
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
Although the area under the receiver operating characteristic (AUC) is the most popular measure of the performance of prediction models, it has limitations, especially when it is used to evaluate the added discrimination of a new biomarker in the model. Pencina et al. (2008) proposed two indices, the net reclassification improvement (NRI) and integrated discrimination improvement (IDI), to supplement the improvement in the AUC (IAUC). Their NRI and IDI are based on binary outcomes in case-control settings, which do not involve time-to-event outcome. However, many disease outcomes are time-dependent and the onset time can be censored. Measuring discrimination potential of a prognostic marker without considering time to event can lead to biased estimates. In this dissertation, we have extended the NRI and IDI to survival analysis settings and derived the corresponding sample estimators and asymptotic tests. Simulation studies were conducted to compare the performance of the time-dependent NRI and IDI with Pencina’s NRI and IDI. For illustration, we have applied the proposed method to a breast cancer study.^ Key words: Prognostic model, Discrimination, Time-dependent NRI and IDI ^
Resumo:
Errors in the administration of medication represent a significant loss of medical resources and pose life altering or life threatening risks to patients. This paper considered the question, what impact do Computerized Physician Order Entry (CPOE) systems have on medication errors in the hospital inpatient environment? Previous reviews have examined evidence of the impact of CPOE on medication errors, but have come to ambiguous conclusions as to the impact of CPOE and decision support systems (DSS). Forty-three papers were identified. Thirty-one demonstrated a significant reduction in prescribing error rates for all or some drug types; decreases in minor errors were most often reported. Several studies reported increases in the rate of duplicate orders and failures to remove contraindicated drugs, often attributed to inappropriate design or to an inability to operate the system properly. The evidence on the effectiveness of CPOE to reduce errors in medication administration is compelling though it is limited by modest study sample sizes and designs. ^
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
Advances in radiotherapy have generated increased interest in comparative studies of treatment techniques and their effectiveness. In this respect, pediatric patients are of specific interest because of their sensitivity to radiation induced second cancers. However, due to the rarity of childhood cancers and the long latency of second cancers, large sample sizes are unavailable for the epidemiological study of contemporary radiotherapy treatments. Additionally, when specific treatments are considered, such as proton therapy, sample sizes are further reduced due to the rareness of such treatments. We propose a method to improve statistical power in micro clinical trials. Specifically, we use a more biologically relevant quantity, cancer equivalent dose (DCE), to estimate risk instead of mean absorbed dose (DMA). Our objective was to demonstrate that when DCE is used fewer subjects are needed for clinical trials. Thus, we compared the impact of DCE vs. DMA on sample size in a virtual clinical trial that estimated risk for second cancer (SC) in the thyroid following craniospinal irradiation (CSI) of pediatric patients using protons vs. photons. Dose reconstruction, risk models, and statistical analysis were used to evaluate SC risk from therapeutic and stray radiation from CSI for 18 patients. Absorbed dose was calculated in two ways: with (1) traditional DMA and (2) with DCE. DCE and DMA values were used to estimate relative risk of SC incidence (RRCE and RRMA, respectively) after proton vs. photon CSI. Ratios of RR for proton vs. photon CSI (RRRCE and RRRMA) were then used in comparative estimations of sample size to determine the minimal number of patients needed to maintain 80% statistical power when using DCE vs. DMA. For all patients, we found that protons substantially reduced the risk of developing a second thyroid cancer when compared to photon therapy. Mean RRR values were 0.052±0.014 and 0.087±0.021 for RRRMA and RRRCE, respectively. However, we did not find that use of DCE reduced the number of patents needed for acceptable statistical power (i.e, 80%). In fact, when considerations were made for RRR values that met equipoise requirements and the need for descriptive statistics, the minimum number of patients needed for a micro-clinical trial increased from 17 using DMA to 37 using DCE. Subsequent analyses revealed that for our sample, the most influential factor in determining variations in sample size was the experimental standard deviation of estimates for RRR across the patient sample. Additionally, because the relative uncertainty in dose from proton CSI was so much larger (on the order of 2000 times larger) than the other uncertainty terms, it dominated the uncertainty in RRR. Thus, we found that use of corrections for cell sterilization, in the form of DCE, may be an important and underappreciated consideration in the design of clinical trials and radio-epidemiological studies. In addition, the accurate application of cell sterilization to thyroid dose was sensitive to variations in absorbed dose, especially for proton CSI, which may stem from errors in patient positioning, range calculation, and other aspects of treatment planning and delivery.
Resumo:
Path analysis has been applied to components of the iron metabolic system with the intent of suggesting an integrated procedure for better evaluating iron nutritional status at the community level. The primary variables of interest in this study were (1) iron stores, (2) total iron-binding capacity, (3) serum ferritin, (4) serum iron, (5) transferrin saturation, and (6) hemoglobin concentration. Correlation coefficients for relationships among these variables were obtained from published literature and postulated in a series of models using measures of those variables that are feasible to include in a community nutritional survey. Models were built upon known information about the metabolism of iron and were limited by what had been reported in the literature in terms of correlation coefficients or quantitative relationships. Data were pooled from various studies and correlations of the same bivariate relationships were averaged after z- transformations. Correlation matrices were then constructed by transforming the average values back into correlation coefficients. The results of path analysis in this study indicate that hemoglobin is not a good indicator of early iron deficiency. It does not account for variance in iron stores. On the other hand, 91% of the variance in iron stores is explained by serum ferritin and total iron-binding capacity. In addition, the magnitude of the path coefficient (.78) of the serum ferritin-iron stores relationship signifies that serum ferritin is the most important predictor of iron stores in the proposed model. Finally, drawing upon known relations among variables and the amount of variance explained in path models, it is suggested that the following blood measures should be made in assessing community iron deficiency: (1) serum ferritin, (2) total iron-binding capacity, (3) serum iron, (4) transferrin saturation, and (5) hemoglobin concentration. These measures (with acceptable ranges and cut-off points) could make possible the complete evaluation of all three stages of iron deficiency in those persons surveyed at the community level. ^
Resumo:
Life expectancy has consistently increased over the last 150 years due to improvements in nutrition, medicine, and public health. Several studies found that in many developed countries, life expectancy continued to rise following a nearly linear trend, which was contrary to a common belief that the rate of improvement in life expectancy would decelerate and was fit with an S-shaped curve. Using samples of countries that exhibited a wide range of economic development levels, we explored the change in life expectancy over time by employing both nonlinear and linear models. We then observed if there were any significant differences in estimates between linear models, assuming an auto-correlated error structure. When data did not have a sigmoidal shape, nonlinear growth models sometimes failed to provide meaningful parameter estimates. The existence of an inflection point and asymptotes in the growth models made them inflexible with life expectancy data. In linear models, there was no significant difference in the life expectancy growth rate and future estimates between ordinary least squares (OLS) and generalized least squares (GLS). However, the generalized least squares model was more robust because the data involved time-series variables and residuals were positively correlated. ^
Resumo:
This investigation compares two different methodologies for calculating the national cost of epilepsy: provider-based survey method (PBSM) and the patient-based medical charts and billing method (PBMC&BM). The PBSM uses the National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Survey (NHAMCS) and the National Ambulatory Medical Care Survey (NAMCS) as the sources of utilization. The PBMC&BM uses patient data, charts and billings, to determine utilization rates for specific components of hospital, physician and drug prescriptions. ^ The 1995 hospital and physician cost of epilepsy is estimated to be $722 million using the PBSM and $1,058 million using the PBMC&BM. The difference of $336 million results from $136 million difference in utilization and $200 million difference in unit cost. ^ Utilization. The utilization difference of $136 million is composed of an inpatient variation of $129 million, $100 million hospital and $29 million physician, and an ambulatory variation of $7 million. The $100 million hospital variance is attributed to inclusion of febrile seizures in the PBSM, $−79 million, and the exclusion of admissions attributed to epilepsy, $179 million. The former suggests that the diagnostic codes used in the NHDS may not properly match the current definition of epilepsy as used in the PBMC&BM. The latter suggests NHDS errors in the attribution of an admission to the principal diagnosis. ^ The $29 million variance in inpatient physician utilization is the result of different per-day-of-care physician visit rates, 1.3 for the PBMC&BM versus 1.0 for the PBSM. The absence of visit frequency measures in the NHDS affects the internal validity of the PBSM estimate and requires the investigator to make conservative assumptions. ^ The remaining ambulatory resource utilization variance is $7 million. Of this amount, $22 million is the result of an underestimate of ancillaries in the NHAMCS and NAMCS extrapolations using the patient visit weight. ^ Unit cost. The resource cost variation is $200 million, inpatient is $22 million and ambulatory is $178 million. The inpatient variation of $22 million is composed of $19 million in hospital per day rates, due to a higher cost per day in the PBMC&BM, and $3 million in physician visit rates, due to a higher cost per visit in the PBMC&BM. ^ The ambulatory cost variance is $178 million, composed of higher per-physician-visit costs of $97 million and higher per-ancillary costs of $81 million. Both are attributed to the PBMC&BM's precise identification of resource utilization that permits accurate valuation. ^ Conclusion. Both methods have specific limitations. The PBSM strengths are its sample designs that lead to nationally representative estimates and permit statistical point and confidence interval estimation for the nation for certain variables under investigation. However, the findings of this investigation suggest the internal validity of the estimates derived is questionable and important additional information required to precisely estimate the cost of an illness is absent. ^ The PBMC&BM is a superior method in identifying resources utilized in the physician encounter with the patient permitting more accurate valuation. However, the PBMC&BM does not have the statistical reliability of the PBSM; it relies on synthesized national prevalence estimates to extrapolate a national cost estimate. While precision is important, the ability to generalize to the nation may be limited due to the small number of patients that are followed. ^