19 resultados para Enzyme characterization

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human endogenous retrovirus K (HERV-K) env gene encodes envelope protein comprising surface (SU) and transmembrane (TM) domains. Having shown the exclusive expression of SU in human breast cancer and the stimulation of SU-specific immune responses in patients with breast cancer, our research here confirmed and extended the data by investigating the expression of HERV-K TM envelope domain and the induction of specific immune responses against TM in breast cancer patients. We found HERV-K TM mRNA and protein expression only in human breast cancer cells but not in normal controls. The specific immune responses against TM domain were induced in mice determined by enzyme-linked immunosorbent assay (ELISA) and IFN-γ enzyme-linked immunosorbent spot (ELISPOT) assay. Furthermore, ELISA detected higher titers of anti-HERV-K TM Env IgG antibodies in sera of breast cancer patients. In addition, the magnitude of the anti-HERV TM B cell response was correlated with the disease stage. Peripheral blood mononuclear cells (PBMCs) before and after in vitro stimulation (IVS) with HERV-K TM from patients with breast cancer as well as healthy controls were tested for T cell responses against HERV-K TM domain by ELISPOT assay. Breast cancer patients (n=21) had stronger HERV-K TM-specific cellular responses than healthy controls (n=12) (P < 0.05). These findings suggest, for the first time, that HERV-K TM expression was enhanced in human breast cancer cells and was able to induce specific B cell and T cell immune responses in breast cancer patients. This study provides support for HERV-K TM as a promising source of antigen for anti-tumor immunotherapy, prevention, diagnosis, and prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human colon tumor cell line, LS174T, has been shown to have four major components of the drug metabolizing system; cytochrome b$\sb5$ reductase, cytochrome b$\sb5$, cytochrome P450 reductase and cytochrome P450, by activity measurements, spectral studies and antibody cross-reactivity. Cytochrome P450IA1 is induced by benzanthracene in these cells as shown by activity with the specific substrate, ethoxyresorufin, cross-reactivity with rabbit antibodies to rat IA1, and by a hybridizing band on a Northern blot to a rat IA1 probe.^ Further, this system has proven responsive to various inducers and conditions of growth. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 $\mu$mol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b$\sb5$ per milligram and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone treatment showed a consistent, but not always significant increase in the NADPH and NADH cyt c reducing activity and benzanthracene treatment an increase in the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5mM) caused a significant decrease in the specific activity of all enzyme contents and activities tested.^ Finally, the cytochrome b$\sb5$ to cytochrome P450, by the coordinate induction of the cytochrome b$\sb5$ pathway by P450 inducers, by the high ratio of NADH to NADPH ethoxycoumarin deethylase activity in uninduced cell microsomes, and by the increase in NADH and NADPH ethoxycoumarin deethylase activity when the microsomes were treated with potassium cyanide, a desaturase inhibitor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis exists as two major and one minor ionic form in the macrophage cell line, RAW 264. The forms have the same molecular weight, 55,000, but differ in their isoelectric points, 5.2, 5.1, and 4.9-5.0. The hypothesis that phosphorylation accounts for the differences in the two major ionic forms and that phosphorylation is involved in the regulation of enzyme activity was investigated. Metabolic-radiolabeling of cells with $\sp{32}$P-orthophosphate indicated that only one of the major forms of the protein can be explained by phosphorylation: treatment of purified ODC with alkaline phosphatase resulted in the loss of the phosphorylated form of the protein, pl 5.1, with a concomitant increase in the unphosphorylated, pl 5.2, form of the protein. Characterization of the phosphorylation sites showed that serine was the present. Tryptic digests of $\sp{32}$P-labeled ODC, analyzed by either two dimensional tryptic peptide mapping or reverse-phase HPLC, contained only one major radiolabeled peptide.^ The role phosphorylation plays in the regulation of enzyme activity was also investigated. Treatment of purified ODC with alkaline phosphatase resulted in the loss of enzyme activity. A positive linear correlation exists between enzyme activity and the amount of phosphorylated form of the protein present.^ To ascertain if the two major forms of the protein were also found in animal cells, ODC was immunoprecipitated from various rat tissues, fractionated by isoelectric focusing, and detected by immunoblotting. ODC was present in rat tissues in a single major form, which comigrated with the pl 5.1, phosphorylated form of ODC present in RAW 264 cell.^ This study concludes that ODC exists as a phosphorylated form, pl 5.1, and an unphosphorylated form, pl 5.2 in RAW 264 cells. The amount of the phosphorylated form of ODC correlates well with the enzyme activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasmid-encoded, constitutively produced $\beta$-lactamase gene from Enterococcus faecalis strain HH22 was genetically characterized. A restriction endonuclease map of the 5.1 kb EcoRI fragment encoding the enterococcal $\beta$-lactamase was prepared and compared with the restriction map of a cloned staphylococcal $\beta$-lactamase gene (from the naturally-occurring staphylococcal $\beta$-lactamase plasmid pI258). Comparison and hybridization studies showed that there were identical restriction sites in the region of the $\beta$-lactamase structural gene but not in the region surrounding this gene. Also the enterococcal $\beta$-lactamase plasmid did not encode resistance to mercury or cadmium which is encoded by the small, transducible staphylococcal $\beta$-lactamase plasmids. The nucleotide sequence of the enterococcal gene was shown to be identical to the published sequences of three of four staphylococcal type A $\beta$-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred-forty nucleotides upstream of the $\beta$-lactamase start codon were also determined for the inducible staphylococcal $\beta$-lactamase gene on pI258; this sequence was identical to that of the constitutively expressed enterococcal gene indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The gene for the enterococcal $\beta$-lactamase and an inducible staphylococcal $\beta$-lactamase were each cloned into a shuttle vector and then transformed into enterococcal and staphylococcal recipients. The major difference between the two host backgrounds was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene but no qualitative difference was seen between the two genera. Also a difference in the level of resistance to ampicillin was seen between the two backgrounds with the cloned enzymes by MIC and time-kill studies. The location of the enzyme was found to be host dependent since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell bound enzyme in the enterococcus. Based on the identity of the enterococcal $\beta$-lactamase and several staphylococcal $\beta$-lactamases, these data suggest recent spread of $\beta$-lactamase to enterococci and also suggest loss of a functional repressor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytochromes P450 (P450) comprise a superfamily of hemoproteins that function in concert with NADPH-cytochrome P450 reductase (P450-reductase) to metabolize both endogenous and exogenous compounds. Many pharmacological agents undergo phase I metabolism by this P450 and P450-reductase monooxygenase system. Phase I metabolism ensures that these highly hydrophobic xenobiotics are made more hydrophilic, and hence easier to extrude from the body. While the majority of phase I metabolism occurs in the liver, metabolism in extrahepatic organ-systems like the intestine, kidney, and brain can have important roles in drug metabolism and/or efficacy. ^ While P450-mediated phase I metabolism has been well studied, investigators have only recently begun to elucidate what physiological roles P450 may have. One way to approach this question is to study P450s that are highly or specifically expressed in extrahepatic tissues. In this project I have studied the role of a recently cloned P450 family member, P450 2D18, that was previously shown to be expressed in the rat brain and kidney, but not in the liver. To this end, I have used the baculovirus expression system to over-express recombinant P450 2D18 and purified the functional enzyme using nickel and hydroxylapatite chromatography. SDS-PAGE analysis indicated that the enzyme was purified to electrophoretic homogeneity and Western analysis showed cross-reactivity with rabbit anti-human P450 2D6. Carbon monoxide difference spectra indicated that the purified protein contained no denatured P450 enzyme; this allowed for further characterization of the substrates and metabolites formed by P450 2D18-mediated metabolism. ^ Because P450 2D18 is expressed in brain, we characterized the activity toward several psychoactive drugs including the antidepressants imipramine and desipramine, and the anti-psychotic drugs chlorpromazine and haloperidol. P450 2D18 preferentially catalyzed the N-demethylation of imipramine, desipramine, and chlorpromazine. This is interesting given the fact that other P450 isoforms form multiple metabolites from such compounds. This limited metabolic profile might suggest that P450 2D18 has some unique function, or perhaps a role in endobiotic metabolism. ^ Further analysis of possible endogenous substrates for P450 2D18 led to the identification of dopamine and arachidonic acid as substrates. It was shown that P450 2D18 catalyzes the oxidation of dopamine to aminochrome, and that the enzyme binds dopamine with an apparent KS value of 678 μM, a value well within reported dopamine concentration in brain dopaminergic systems. Further, it was shown that P450 2D18 binds arachidonic acid with an apparent KS value of 148 μM, and catalyzes both the ω-hydroxylation and epoxygenation of arachidonic acid to metabolites that have been shown to have vasoactive properties in brain, kidney, and heart tissues. These data provide clues for endogenous roles of P450 within the brain, and possible involvement in the pathogenesis of Parkinson's disease. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydroxylation of N- and O-methyl drugs and a polycyclic hydrocarbon has been demonstrated in microsomes prepared from two transplantable Morris hepatomas (i.e., 7288C. t.c. and 5123 t.c.(H). The hydroxylation rates of the drug benzphetamine and the polycyclic hydrocarbon benzo {(alpha)} pyrene by tumor microsomes were inducible 2 to 3-fold and 2-fold, respectively by pretreatment of rats with phenobarbital/hydrocortisone. Hepatoma 5123t.c.(h) microsomal hydroxylation activities were more inducible after these pretreatments than hepatoma 7288C.t.c. Two chemotherapeutic drugs (cyclophosphamide and isophosphamide) were shown to be mutagenic after activation by the tumor hemogenate with the TA100 strain of Salmonella typhimurium bacteria. NADPH-cytochrome P-450 was purified from phenobarbital/hydrocortisone treated rat hepatoma 5123t.c.(H) microsomes 353-fold with a specific activity 63.6 nmol of cytochrome c reduced per min per mg of protein. The purified enzyme, has an apparent molecular weight of 79,500 daltons, and contained an equal molar ratio of FMN and FAD, with a total flavin content of 16.4 nmol per mg of protein. The purified enzyme also catalyzed electron transfer to artificial electron acceptors with the K(,m) values of the hepatoma reductase similar to those of purified liver reductase. The K(,m) value of the hepatoma reductase (13 uM) for NADPH was similar to that of purified liver reductase (5.0 uM). In addition the purified hepatoma reductase was immunochemically similar to the liver reductase.^ Hepatoma cytochrome P-450, the hemeprotein component of the hepatoma microsomes of rats pretreated with phenobarbital/hydrocortisone. The resolution of the six forms was achieved by the DE-53 ion-exchange chromatography, and further purified by hydroxyapatite. The six different fractions that contained P-450 activity, had specific contents from 0.47 to 1.75 nmol of cytochrome P-450 per mg of protein, and indicated a 2 to 9-fold purification as compared to the original microsomes. In addition, difference spectra, molecular weights and immunological results suggest there are at least six different forms of cytochrome P-450 in hepatoma 5123 t.c.(H). ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to investigate the properties of human acid (alpha)-glucosidase with respect to: (i) the molecular heterogeneity of the enzyme and (ii) the synthesis, post-translational modification, and transport of acid (alpha)-glucosidase in human fibroblasts.^ The initial phase of these investigations involved the purification of acid (alpha)-glucosidase from the human liver. Human hepatic acid (alpha)-glucosidase was characterized by isoelectric focusing and native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Four distinct charge forms of hepatic acid (alpha)-glucosidase were separated by chromatofocusing and characterized individually. Charge heterogeneity was demonstrated to result from differences in the polypeptide components of each charge form.^ The second aspect of this research focused on the biosynthesis and the intracellular processing and transport of acid (alpha)-glucosidase in human fibroblasts. These experiments were accomplished by immune precipitation of the biosynthetic intermediates of acid (alpha)-glucosidase from radioactively labeled fibroblasts with polyclonal and monoclonal antibodies raised against human hepatic acid (alpha)-glucosidase. The immune precipitated biosynthetic forms of acid (alpha)-glucosidase were analyzed by SDS-PAGE and autoradiography. The pulse-chase experiments demonstrated the existence of several transient, high molecular weight precursors of acid (alpha)-glucosidase. These precursors were demonstrated to be intermediates of acid (alpha)-glucosidase at different stages of transport and processing in the Golgi apparatus. Other experiments were performed to examine the role of co-translational glycosylation of acid (alpha)-glucosidase in the transport and processing of precursors of this enzyme.^ A specific immunological assay for detecting acid (alpha)-glucosidase was developed using the monoclonal antibodies described above. This method was modified to increase the sensitivity of the assay by utilization of the biotin-avidin amplification system. This method was demonstrated to be more sensitive for detecting human acid (alpha)-glucosidase than the currently used biochemical assay for acid (alpha)-glucosidase activity. It was also demonstrated that the biotin-avidin immunoassay could discriminate between normal and acid (alpha)-glucosidase deficient fibroblasts, thus providing an alternative approach to detecting this inborn error in metabolism. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroviruses uniquely co-package two copies of their genomic RNA within each virion. The two copies are used as templates for synthesis of the proviral DNA during the process of reverse transcription. Two template switches are required to complete retroviral DNA synthesis by the retroviral enzyme, reverse transcriptase. With two RNA genomes present in the virion, reverse transcriptase can make template switches utilizing only one of the RNA templates (intramolecular) or utilizing both RNA templates (intermolecular) during the process of reverse transcription. The results presented in this study show that during a single cycle of Moloney murine leukemia virus replication, both nonrecombinant and recombinant proviruses predominantly underwent intramolecular minus- and plus-strand transfers during the process of reverse transcription. This is the first study to examine the nature of the required template switches occurring during MLV replication and these results support the previous findings for SNV, and the hypothesis that the required template switches are ordered events. This study also determined rates for deletion and a rate of recombination for a single cycle of MLV replication. The rates reported here are comparable to the rates previously reported for both SNV and MLV. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^