4 resultados para Environmental parameters
em DigitalCommons@The Texas Medical Center
Resumo:
Research studies on the association between exposures to air contaminants and disease frequently use worn dosimeters to measure the concentration of the contaminant of interest. But investigation of exposure determinants requires additional knowledge beyond concentration, i.e., knowledge about personal activity such as whether the exposure occurred in a building or outdoors. Current studies frequently depend upon manual activity logging to record location. This study's purpose was to evaluate the use of a worn data logger recording three environmental parameters—temperature, humidity, and light intensity—as well as time of day, to determine indoor or outdoor location, with an ultimate aim of eliminating the need to manually log location or at least providing a method to verify such logs. For this study, data collection was limited to a single geographical area (Houston, Texas metropolitan area) during a single season (winter) using a HOBO H8 four-channel data logger. Data for development of a Location Model were collected using the logger for deliberate sampling of programmed activities in outdoor, building, and vehicle locations at various times of day. The Model was developed by analyzing the distributions of environmental parameters by location and time to establish a prioritized set of cut points for assessing locations. The final Model consisted of four "processors" that varied these priorities and cut points. Data to evaluate the Model were collected by wearing the logger during "typical days" while maintaining a location log. The Model was tested by feeding the typical day data into each processor and generating assessed locations for each record. These assessed locations were then compared with true locations recorded in the manual log to determine accurate versus erroneous assessments. The utility of each processor was evaluated by calculating overall error rates across all times of day, and calculating individual error rates by time of day. Unfortunately, the error rates were large, such that there would be no benefit in using the Model. Another analysis in which assessed locations were classified as either indoor (including both building and vehicle) or outdoor yielded slightly lower error rates that still precluded any benefit of the Model's use.^
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^