6 resultados para Enteric coating

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Large field studies in travelers' diarrhea (TD) in multiple destinations are limited by the need to perform stool cultures on site in a timely manner. A method for the collection, transport and storage of fecal specimens that does not require immediate processing, refrigeration and is stable for months would be advantageous. ^ Objectives. Determine if enteric pathogen bacterial DNA can be identified in cards routinely used for evaluation of fecal occult blood. ^ Methods. U.S. students traveling to Mexico in 2005-07 were followed for occurrence of diarrheal illness. When ill, students provided a stool specimen for culture and occult blood by the standard method. Cards were then stored at room temperature prior to DNA extraction. A multiplex fecal PCR was performed to identify enterotoxigenic Escherichia coli and enteroaggregative E. coli (EAEC) in DNA extracted from stools and occult blood cards. ^ Results. Significantly more EAEC cases were identified by PCR done in DNA extracted from cards (49%) or from frozen feces (40%) than by culture followed by HEp-2 adherence assays (13%). Similarly more ETEC cases were detected in card DNA (38%) than fecal DNA (30%) or culture followed by hybridization (10%). Sensitivity and specificity of the card test was 75% and 62%, respectively, and 50% and 63%, respectively, when compared to EAEC and ETEC culture, respectively, and 53% and 51%, respectively compared to EAEC multiplex fecal PCR and 56% and 70%, respectively, compared to ETEC multiplex fecal PCR. ^ Conclusions. DNA extracted from fecal cards used for detection of occult blood is of use in detecting enteric pathogens. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial pathogens such as enterotoxigenic Escherichia coli, Salmonella, and Campylobacter spp. are associated with up to 80% of diarrheal illness to travelers from developed countries to developing countries. In order to study acute gastrointestinal diseases, researchers from developed countries such as the United States rely on transporting clinical specimens from the developing countries to laboratories in the U.S. in transport media systems. There are few commercially available transport media systems cited in the literature or designated by transport system manufacturers for the transport of enteric bacteria. Therefore a laboratory-based study was conducted to assess three commercial available transport media systems, two gel swabs and one liquid vial, to determine the most appropriate for the maintenance and recovery of common enteric bacterial pathogens. A total of 13 bacterial enteropathogens were recovered from 25°C and 4°C storage temperatures at time points up to 21 days. The results demonstrated that the gel swab and liquid vial transport systems performed similarly for all isolates at both temperatures. All three transport media systems struggled to maintain the isolates at recoverable concentrations when stored at 4°C and it is recommended that isolates be stored at 25°C in transport media systems. Lastly, swab transport systems are recommend for transport since they are small and easy to pack, resist leakage, and are less expensive than similarly performing liquid vial transport media systems.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was undertaken to evaluate the role of fomites in the transmission of diarrhea in day-care centers (DCC) and to elucidate the paths by which enteric organisms spread within this setting.^ During a nine-month period (December 1980-August 1981) extensive culturing of inanimate objects, as well as children and staff was done routinely each month and again repeated during diarrhea outbreaks. Air was sampled from the classrooms and toilets using a Single-Stage Sieve Sampler (Ross Industries, Midland, VA.). Stool samples were collected from both ill and well children and staff in the affected rooms only during outbreaks. Environmental samples were processed for Shigella, salmonella and fecal coliforms while stools were screened for miscellaneous enteropathogens.^ A total of 11 outbreaks occurred in the 5 DCC during the study period. Enteric pathogens were recovered in 7 (64%) of the outbreaks. Multiple pathogens were identified in 3 outbreaks. The most frequently identified pathogen in stools was Giardia lamblia which was recovered in 5 (45%) of the outbreaks. Ten of the 11 (91%) outbreaks occurred in children less than 12 months of age.^ Environmental microbiology studies together with epidemiologic information revealed that enteric organisms were transmitted from person-to-person. On routine sampling, fecal coliforms were most frequently isolated from tap handles and diaper change areas. Contamination with fetal coliforms was wide-spread during diarrhea outbreaks. Fecal coliforms were recovered with significantly greater frequency from hands, toys and other classroom objects during outbreaks than during non-outbreak period. Salmonella typhimurium was recovered from a table top during an outbreak of Salmonellosis. There was no association between the level of enteric microbial contamination in the toilet areas and the occurrence of outbreaks. No evidence was found to indicate that enteric organisms were spread by the airborne route via aerosols.^ Toys, other classroom objects and contaminated hands probably play a major role in the transmission of enteropathogens during day-care center outbreaks. The presence of many enteric agents in the environment undoubtedly explains the polymicrobial etiology of the day-care center associated diarrhea outbreaks. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater constitutes approximately 30% of freshwater globally and serves as a source of drinking water in many regions. Groundwater sources are subject to contamination with human pathogens (viruses, bacteria and protozoa) from a variety of sources that can cause diarrhea and contribute to the devastating global burden of this disease. To attempt to describe the extent of this public health concern in developing countries, a systematic review of the evidence for groundwater microbially-contaminated at its source as risk factor for enteric illness under endemic (non-outbreak) conditions in these countries was conducted. Epidemiologic studies published in English language journals between January 2000 and January 2011, and meeting certain other criteria, were selected, resulting in eleven studies reviewed. Data were extracted on microbes detected (and their concentrations if reported) and on associations measured between microbial quality of, or consumption of, groundwater and enteric illness; other relevant findings are also reported. In groundwater samples, several studies found bacterial indicators of fecal contamination (total coliforms, fecal coliforms, fecal streptococci, enterococci and E. coli), all in a wide range of concentrations. Rotavirus and a number of enteropathogenic bacteria and parasites were found in stool samples from study subjects who had consumed groundwater, but no concentrations were reported. Consumption of groundwater was associated with increased risk of diarrhea, with odds ratios ranging from 1.9 to 6.1. However, limitations of the selected studies, especially potential confounding factors, limited the conclusions that could be drawn from them. These results support the contention that microbial contamination of groundwater reservoirs—including with human enteropathogens and from a variety of sources—is a reality in developing countries. While microbially-contaminated groundwaters pose risk for diarrhea, other factors are also important, including water treatment, water storage practices, consumption of other water sources, water quantity and access to it, sanitation and hygiene, housing conditions, and socio-economic status. Further understanding of the interrelationships between, and the relative contributions to disease risk of, the various sources of microbial contamination of groundwater can guide the allocation of resources to interventions with the greatest public health benefit. Several recommendations for future research, and for practitioners and policymakers, are presented.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess whether C. difficile infection (CDI) increases the risk of bacteremia or E. coli infection. The first specific aim of this study was to study the incidence of post C. difficile bacteremia in CDI patients stratified by disease severity vs. controls. The second specific aim was to study the incidence of post C. difficile E. coli infection from normally sterile sites stratified by disease severity vs. controls. This was a retrospective case case control study. The cases came from an ongoing prospective cohort study of CDI. Case group 1 were patients with mild to moderate CDI. Case group 2 were patients who had severe CDI. Controls were hospitalized patients given broad spectrum antibiotics that did not develop CDI. Controls were matched by age (±10 years) and duration of hospital visit (±1 week). 191 cases were selected from the cohort study and 191 controls were matched to the cases. Patients were followed up to 60 days after the initial diagnosis of CDI and assessed for bacteremia and E. coli infections. The Zar score was used to determine the severity of the CDI. Stata 11 was used to run all analyses. ^ The risk of non staphylococcal bacteremia after diagnosis of CDI was higher compared to controls (14% and 7% respectively, OR: 2.27; 95% CI:1.07-5.01, p=0.028). The risk of getting an E.coli infection was higher in cases than in controls (13% and 9% respectively although the results were not statistically significant (OR:1.4; 95% CI:0.38-5.59;p=0.32). Rates of non-staphylococcal bacteremia and E. coli infection did not differ cased on CDI severity. ^ This study showed that the risk of developing non-staphylococcus bacteremia was higher in patients with CDI compared to matched controls. The findings supported the hypothesis that CDI increases the risk of bacterial translocation specifically leading to the development of bacteremia.^