3 resultados para Energy-dense diet
em DigitalCommons@The Texas Medical Center
Resumo:
In industrialized countries the prevalence of obesity among women decreases with increasing socioeconomic status. While this relation has been amply documented, its explanation and implications for other causal factors of obesity has received much less attention. Differences in childbearing patterns, norms and attitudes about fatness, dietary behaviors and physical activity are some of the factors that have been proposed to explain the inverse relation.^ The objectives of this investigation were to (1) examine the associations among social characteristics and weight-related attitudes and behaviors, and (2) examine the relations of these factors to weight change and obesity. Information on social characteristics, weight-related attitudes, dietary behaviors, physical activity and childbearing were collected from 304 Mexican American women aged 19 to 50 living in Starr County, Texas, who were at high risk for developing diabetes. Their weights were recorded both at an initial physical examination and at a follow-up interview one to two and one-half years later, permitting the computation of current Body Mass Index (weight/height('2)) and weight change during the interval for each subject. Path analysis was used to examine direct and indirect relations among the variables.^ The major findings were: (1) After controlling for age, childbearing was not an independent predictor of weight change or Body Mass Index. (2) Neither planned exercise nor total daily physical activity were independent predictors of weight change. (3) Women with higher social characteristics scores reported less frequent meals and less use of calorically dense foods, factors associated with lower risk for weight gain. (4) Dietary intake measures were not significantly related to Body Mass Index. However, dietary behaviors (frequency of meals and snacks, use of high and low caloric density foods, eating restraint and disinhibition of restraint) did explain a significant portion (17.4 percent) of the variance in weight change, indicating the importance of using dynamic measures of weight status in studies of the development of obesity. This study highlights factors amenable to intervention to reverse or to prevent weight gain in this population, and thereby reduce the prevalence of diabetes and its sequelae. ^
Resumo:
The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.
Resumo:
Obesity is postulated to be one of the major risk factors for pancreatic cancer, and recently it was indicated that an elevated body mass index (BMI correlates strongly with a decrease in patient survival. Despite the evident relationship, the molecular mechanisms involved are unclear. Oncogenic mutation of K-Ras is found early and is universal in pancreatic cancer. Extensive evidence indicates oncogenic K-Ras is not entirely active and it requires a triggering event to surpass the activity of Ras beyond the threshold necessary for a Ras-inflammation feed-forward loop. We hypothesize that high fat intake induces a persistent low level inflammatory response triggering increased K-Ras activity and that Cox-2 is essential for this inflammatory reaction. To determine this, LSL-K-Ras mice were crossed with Ela-CreER (Acinar-specific) or Pdx-1-Cre (Pancreas-specific) to “knock-in” oncogenic K-Ras. Additionally, these animals were crossed with Cox-2 conditional knockout mice to access the importance of Cox-2 in the inflammatory loop present. The mice were fed isocaloric diets containing 60% energy or 10% energy from fat. We found that a high fat diet increased K-Ras activity, PanIN formation, and fibrotic stroma significantly compared to a control diet. Genetic deletion of Cox-2 prevented high fat diet induced fibrosis and PanIN formation in oncogenic K-Ras expressing mice. Additionally, long term consumption of high fat diet, increased the progression of PanIN lesions leading to invasive cancer and decreased overall survival rate. These findings indicate that a high fat diet can stimulate the activation of oncogenic K-Ras and initiate an inflammatory feed forward loop requiring Cox-2 leading to inflammation, fibrosis, and PanINs. This mechanism could explain the relationship between a high fat diet and elevated risk for pancreatic cancer.