9 resultados para Energy development.

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

America’s low-income families struggle to protect their children from multiple threats to their health and growth. Many research and advocacy groups explore the health and educational effects of food insecurity, but less is known about these effects on very young children. Children’s HealthWatch, a group of pediatric clinicians and public health researchers, has continuously collected data on the effects of food insecurity alone and in conjunction with other household hardships since 1998. The group’s peer reviewed research has shown that a number of economic risks at the household level, including food, housing and energy insecurity, tend to be correlated. These insecurities alone or in conjunction increase the risk that a young child will suffer various negative health consequences, including increases in lifetime hospitalizations, parental report of fair or poor health,1 or risk for developmental delays.2 Child food insecurity is an incremental risk indicator above and beyond the risk imposed by household-level food insecurity. The Children’sHealthwatch research also suggests public benefits programs modify some of these effects for families experiencing hardships. This empirical evidence is presented in a variety of public venues outside the usual scientific settings, such as congressional hearings, to support the needs of America’s most vulnerable population through policy change. Children’s HealthWatch research supports legislative solutions to food insecurity, including sustained funding for public programs and re-evaluation of the use of the Thrifty Food Plan as the basis of SNAP benefits calculations. Children’s HealthWatch is one of many models to support the American Academy of Pediatrics’ call to “stand up, speak up, and step up for children.”3 No isolated group or single intervention will solve child poverty or multiple hardships. However, working collaboratively each group has a role to play in supporting the health and well-being of young children and their families. 1. Cook JT, Frank DA, Berkowitz C, et al. Food insecurity is associated with adverse health outcomes among human infants and toddlers. J Nutr. 2004;134:1432-1438. 2. Rose-Jacobs R, Black MM, Casey PH, et al. Household food insecurity: associations with at-risk infant and toddler development. Pediatrics. 2008;121:65-72. 3. AAP leader says to stand up, speak up, and step up for child health [news release]. Boston, MA: American Academy of Pediatrics; October 11, 2008. http://www2.aap.org/pressroom/nce/nce08childhealth.htm. Accessed January 1, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing attention has been given to the connection between metabolism and cancer. Under aerobic conditions, normal cells predominantly use oxidative phosphorylation for ATP generation. In contrast, increase of glycolytic activity has been observed in various tumor cells, which is known as Warburg effect. Cancer cells, compared to normal cells, produce high levels of Reactive Oxygen Species (ROS) and hence are constantly under oxidative stress. Increase of oxidative stress and glycolytic activity in cancer cells represent major biochemical alterations associated with malignant transformation. Despite prevalent upregulation of ROS production and glycolytic activity observed in various cancer cells, underlying mechanisms still remain to be defined. Oncogenic signals including Ras has been linked to regulation of energy metabolism and ROS production. Current study was initiated to investigate the mechanism by which Ras oncogenic signal regulates cellular metabolism and redox status. A doxycycline inducible gene expression system with oncogenic K-ras transfection was constructed to assess the role played by Ras activation in any given studied parameters. Data obtained here reveals that K-ras activation directly caused mitochondrial dysfunction and ROS generation, which appeared to be mechanistically associated with translocation of K-ras to mitochondria and the opening of the mitochondrial permeability transition pore. K-ras induced mitochondrial dysfunction led to upregulation of glycolysis and constitutive activation of ROS-generating NAD(P)H Oxidase (NOX). Increased oxidative stress, upregulation of glycolytic activity, and constitutive activated NOX were also observed in the pancreatic K-ras transformed cancer cells compared to their normal counterparts. Compared to non-transformed cells, the pancreatic K-ras transformed cancer cells with activated NOX exhibited higher sensitivity to capsaicin, a natural compound that appeared to target NOX and cause preferential accumulation of oxidative stress in K-ras transformed cells. Taken together, these findings shed new light on the role played by Ras in the road to cancer in the context of oxidative stress and metabolic alteration. The mechanistic relationship between K-ras oncogenic signals and metabolic alteration in cancer will help to identify potential molecular targets such as NAD(P)H Oxidase and glycolytic pathway for therapeutic intervention of cancer development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The uncertainties introduced by source positioning in the phantom and timer resolution limitations were also investigated. It was found that the linearity correction factor was where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate energy+block correction factors were determined for both models of 192Ir sources currently in clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the limited resolution of the source timer had insignificant effects on the ability to measure dose. Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of eight participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a standard deviation of 0.011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of obesity has continued to rise over the last several decades in the United States lending to overall increases in risk for chronic diseases including many types of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor types. Previous data has demonstrated differential signaling through Akt and mTOR via the IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In an effort to better understand the importance of mTORC1 in the context of both positive and negative energy balance during epithelial carcinogenesis, we have employed the use of specific pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) to target mTORC1 or various components of this pathway during skin tumor promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition via rapamycin, metformin or combination treatments greatly inhibited skin tumor development in normal, overweight and obese mice. Furthermore, mechanisms by which these chemopreventive agents may be exerting their anti-tumor effects were explored. In addition, the effect of these compounds on the epidermal proliferative response was analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent manner. Both compounds also blocked or attenuated TPA-induced signaling through epidermal mTORC1 as well as several downstream targets. In addition, inhibition of this pathway by metformin appeared to be, at least in part, dependent on AMPK activation in the skin. Overall, the data indicate that pharmacological strategies targeting this pathway offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They suggest that mTORC1 contributes significantly to the process of skin tumor promotion, specifically during dietary energy balance effects. Exploiting the mechanistic information underlying dietary energy balance responsive pathways will help translate decades of research into effective strategies for prevention of epithelial carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is postulated to be one of the major risk factors for pancreatic cancer, and recently it was indicated that an elevated body mass index (BMI correlates strongly with a decrease in patient survival. Despite the evident relationship, the molecular mechanisms involved are unclear. Oncogenic mutation of K-Ras is found early and is universal in pancreatic cancer. Extensive evidence indicates oncogenic K-Ras is not entirely active and it requires a triggering event to surpass the activity of Ras beyond the threshold necessary for a Ras-inflammation feed-forward loop. We hypothesize that high fat intake induces a persistent low level inflammatory response triggering increased K-Ras activity and that Cox-2 is essential for this inflammatory reaction. To determine this, LSL-K-Ras mice were crossed with Ela-CreER (Acinar-specific) or Pdx-1-Cre (Pancreas-specific) to “knock-in” oncogenic K-Ras. Additionally, these animals were crossed with Cox-2 conditional knockout mice to access the importance of Cox-2 in the inflammatory loop present. The mice were fed isocaloric diets containing 60% energy or 10% energy from fat. We found that a high fat diet increased K-Ras activity, PanIN formation, and fibrotic stroma significantly compared to a control diet. Genetic deletion of Cox-2 prevented high fat diet induced fibrosis and PanIN formation in oncogenic K-Ras expressing mice. Additionally, long term consumption of high fat diet, increased the progression of PanIN lesions leading to invasive cancer and decreased overall survival rate. These findings indicate that a high fat diet can stimulate the activation of oncogenic K-Ras and initiate an inflammatory feed forward loop requiring Cox-2 leading to inflammation, fibrosis, and PanINs. This mechanism could explain the relationship between a high fat diet and elevated risk for pancreatic cancer.