7 resultados para Energy Release Rate
em DigitalCommons@The Texas Medical Center
Resumo:
The pineal gland is known to be light sensitive and to be involved in the seasonal reproduction of male golden hamster Mesocricetus auratus. In general, the pineal gland has been demonstrated to be inhibitory to the reproductive system of the male golden hamster. Melatonin is a pineal hormone which can mimic the action of the pineal gland upon the reproductive system. However, the actual site(s) of melatonin action in the hamster has not been demonstrated. In this study a direct effect of melatonin on the release of FSH and LH from superfused hamster pituitary glands was investigated.^ The superfused pituitary glands showed a stable in vitro basal release of FSH and LH for up to 10 hours. The superfused pituitaries demonstrated reproducible responses to repeated pulses of 10('-8) M LHRH, and a dose-dependent response to stimulation with different concentrations of LHRH.^ Melatonin inhibited the basal release of FSH and LH from superfused hamster pituitary glands. This effect of melatonin was specific and not a general indolamine or catecholamine effect.^ The superfused pituitaries had a diurnal differential responsiveness to physiological concentrations of melatonin with respect to FSH and LH release which were related to the light cycle used to maintain the experimental animals. A LD 14:10 photoperiod cycle was used with light on from 5 a.m. till 7 p.m.. With pituitary glands obtained at 8:30 a.m., the basal release of FSH exhibited an initial inhibition, a gradual rebound at approximately two hours after the beginning of melatonin superfusion, and a significant overshoot of FSH release after the cessation of infusion with melatonin (Morning Response). If the pituitary glands were obtained from hamsters which were sacrificed at 3:30 p.m., the release rate of FSH exhibited an inhibition during the entire period of melatonin infusion with a rebound effect appearing only after melatonin infusion was discontinued (Afternoon Response). There was no significant difference in the responsiveness of the pituitary gland to infusion with melatonin at either 8:30 a.m. or 3:30 p.m. with respect to LH release. Also, melatonin could not inhibit the gonadotropins response to continuous superfusion with 10('-9) M LHRH in pituitaries obtained at either 8:30 a.m. or 3:30 p.m., nor inhibit the stimulatory effect of pulsatile 10('-9) M LHRH. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI^
Resumo:
The purpose of this prospective observational field study was to present a model for measuring energy expenditure among nurses and to determine if there was a difference between the energy expenditure of nurses providing direct care to adult patients on general medical-surgical units in two major metropolitan hospitals and a recommended energy expenditure of 3.0 kcal/minute over 8 hours. One-third of the predicted cycle ergometer VO2max for the study population was used to calculate the recommended energy expenditure.^ Two methods were used to measure energy expenditure among participants during an 8 hour day shift. First, the Energy Expenditure Prediction Program (EEPP) developed by the University of Michigan Center for Ergonomics was used to calculate energy expenditure using activity recordings from observation (OEE; n = 39). The second method used ambulatory electrocardiography and the heart rate-oxygen consumption relationship (HREE; n = 20) to measure energy expenditure. It was concluded that energy expenditure among nurses can be estimated using the EEPP. Using classification systems from previous research, work load among the study population was categorized as "moderate" but was significantly less than (p = 0.021) 3.0 kcal/minute over 8 hours or 1/3 of the predicted VO2max.^ In addition, the relationships between OEE, body-part discomfort (BPCDS) and mental work load (MWI) were evaluated. The relationships between OEE/BPCDS and OEE/MWI were not significant (p = 0.062 and 0.091, respectively). Among the study population, body-part discomfort significantly increased for upper arms, mid-back, lower-back, legs and feet by mid-shift and by the end of the shift, the increase was also significant for neck and thighs.^ The study also provided documentation of a comprehensive list of nursing activities. Among the most important findings were the facts that the study population spent 23% of the workday in a bent posture, walked an average of 3.14 miles, and spent two-thirds of the shift doing activities other than direct patient care, such as paperwork and communicating with other departments. A discussion is provided regarding the ergonomic implications of these findings. ^
Resumo:
The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^
Resumo:
Purpose. To examine the association between living in proximity to Toxics Release Inventory (TRI) facilities and the incidence of childhood cancer in the State of Texas. ^ Design. This is a secondary data analysis utilizing the publicly available Toxics release inventory (TRI), maintained by the U.S. Environmental protection agency that lists the facilities that release any of the 650 TRI chemicals. Total childhood cancer cases and childhood cancer rate (age 0-14 years) by county, for the years 1995-2003 were used from the Texas cancer registry, available at the Texas department of State Health Services website. Setting: This study was limited to the children population of the State of Texas. ^ Method. Analysis was done using Stata version 9 and SPSS version 15.0. Satscan was used for geographical spatial clustering of childhood cancer cases based on county centroids using the Poisson clustering algorithm which adjusts for population density. Pictorial maps were created using MapInfo professional version 8.0. ^ Results. One hundred and twenty five counties had no TRI facilities in their region, while 129 facilities had at least one TRI facility. An increasing trend for number of facilities and total disposal was observed except for the highest category based on cancer rate quartiles. Linear regression analysis using log transformation for number of facilities and total disposal in predicting cancer rates was computed, however both these variables were not found to be significant predictors. Seven significant geographical spatial clusters of counties for high childhood cancer rates (p<0.05) were indicated. Binomial logistic regression by categorizing the cancer rate in to two groups (<=150 and >150) indicated an odds ratio of 1.58 (CI 1.127, 2.222) for the natural log of number of facilities. ^ Conclusion. We have used a unique methodology by combining GIS and spatial clustering techniques with existing statistical approaches in examining the association between living in proximity to TRI facilities and the incidence of childhood cancer in the State of Texas. Although a concrete association was not indicated, further studies are required examining specific TRI chemicals. Use of this information can enable the researchers and public to identify potential concerns, gain a better understanding of potential risks, and work with industry and government to reduce toxic chemical use, disposal or other releases and the risks associated with them. TRI data, in conjunction with other information, can be used as a starting point in evaluating exposures and risks. ^
Resumo:
This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The uncertainties introduced by source positioning in the phantom and timer resolution limitations were also investigated. It was found that the linearity correction factor was where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate energy+block correction factors were determined for both models of 192Ir sources currently in clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the limited resolution of the source timer had insignificant effects on the ability to measure dose. Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of eight participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a standard deviation of 0.011.
Resumo:
The infant mortality rate (IMR) is considered to be one of the most important indices of a country's well-being. Countries around the world and other health organizations like the World Health Organization are dedicating their resources, knowledge and energy to reduce the infant mortality rates. The well-known Millennium Development Goal 4 (MDG 4), whose aim is to archive a two thirds reduction of the under-five mortality rate between 1990 and 2015, is an example of the commitment. ^ In this study our goal is to model the trends of IMR between the 1950s to 2010s for selected countries. We would like to know how the IMR is changing overtime and how it differs across countries. ^ IMR data collected over time forms a time series. The repeated observations of IMR time series are not statistically independent. So in modeling the trend of IMR, it is necessary to account for these correlations. We proposed to use the generalized least squares method in general linear models setting to deal with the variance-covariance structure in our model. In order to estimate the variance-covariance matrix, we referred to the time-series models, especially the autoregressive and moving average models. Furthermore, we will compared results from general linear model with correlation structure to that from ordinary least squares method without taking into account the correlation structure to check how significantly the estimates change.^
Resumo:
CHARACTERIZATION OF THE COUNT RATE PERFORMANCE AND EVALUATION OF THE EFFECTS OF HIGH COUNT RATES ON MODERN GAMMA CAMERAS Michael Stephen Silosky, B.S. Supervisory Professor: S. Cheenu Kappadath, Ph.D. Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and measurement of system dead time (τ) is important for quantitative SPECT. The CRP of three modern gamma cameras was characterized using established methods (Decay and Dual Source) under a variety of experimental conditions. For the Decay method, input count rate was plotted against observed count rate and fit to the paralyzable detector model (PDM) to estimate τ (Rates method). A novel expression for observed counts as a function of measurement time interval was derived and the observed counts were fit to this expression to estimate τ (Counts method). Correlation and Bland-Altman analysis were performed to assess agreement in estimates of τ between methods. The dependencies of τ on energy window definition and incident energy spectrum were characterized. The Dual Source method was also used to estimate τ and its agreement with the Decay method under identical conditions and the effects of total activity and the ratio of source activities were investigated. Additionally, the effects of count rate on several performance metrics were evaluated. The CRP curves for each system agreed with the PDM at low count rates but deviated substantially at high count rates. Estimates of τ for the paralyzable portion of the CRP curves using the Rates and Counts methods were highly correlated (r=0.999) but with a small (~6%) difference. No significant difference was observed between the highly correlated estimates of τ using the Decay or Dual Source methods under identical experimental conditions (r=0.996). Estimates of τ increased as a power-law function with decreasing ratio of counts in the photopeak to the total counts and linearly with decreasing spectral effective energy. Dual Source method estimates of τ varied as a quadratic with the ratio of the single source to combined source activities and linearly with total activity used across a large range. Image uniformity, spatial resolution, and energy resolution degraded linearly with count rate and image distorting effects were observed. Guidelines for CRP testing and a possible method for the correction of count rate losses for clinical images have been proposed.