1 resultado para Endogenous lobby formation
em DigitalCommons@The Texas Medical Center
Resumo:
Nitric oxide is involved in a multitude of processes including regulation of vascular tone, neurotransmission, immunity, and cancer. Evidence suggests that nitric oxide exhibits anti-apoptotic activity in melanoma cells. Our laboratory showed that tumor expression of inducible nitric oxide synthase correlated strongly with poor survival in stage III and IV melanoma patients, suggesting an antagonistic role for nitric oxide in melanoma response to therapy. Therefore, the hypothesis that endogenously produced nitric oxide antagonizes chemotherapy-induced apoptosis was formed. Using cisplatin as a model for DNA damage in melanoma cell lines, the capacity of nitric oxide to regulate cell growth and apoptotic responses to cisplatin treatment was examined. The depletion of endogenously generated nitric oxide resulted in changes in cell cycle regulation and enhanced cisplatin-induced apoptosis in melanoma cells. Since nitric oxide was shown to be involved in the regulation of p53 stability, conformation and DNA binding activity, whether signaling through wild-type p53 in melanoma cells is regulated by nitric oxide was tested. Cisplatin-induced p53 accumulation and p21Waf1/Cip1/Sdi1 expression in nitric oxide-depleted melanoma cells were found to be strongly suppressed. When p53 binding to the p21Waf1/Cip1/Sdi1 promoter was examined, it was found that nitric oxide depletion significantly reduced the cisplatin-induced formation of p53-DNA complexes. These results suggest that nitric oxide is required for activation of wild-type p53 after DNA damage in melanoma cells. Finally, whether signaling through p53 controls melanoma response to DNA damage was examined. Transfection of a plasmid containing a dominant negative form of mutated p53 inhibited p21 Waf1/Cip1/Sdi1 expression and concomitantly enhanced apoptosis after cisplatin treatment. These data suggest that the induction of wild-type p53 protects melanoma cells against DNA damage via the up-regulation of p21 Waf1/Cip1/Sdi1. Together, these data strongly support the model that endogenous nitric oxide is required for p53 activation and p21Waf1/Cip1/Sdi1 expression after DNA damage, which can enhance melanoma resistance to therapy. Thus, in context of melanoma cells with wild-type p53 , low levels of endogenous constitutively-produced nitric oxide appear to facilitate the activation of p53 in response to DNA damage, thereby allowing for cell cycle arrest via p21Waf1/Cip1/Sdi1 induction, adequate DNA repair, and ultimately enhanced resistance to apoptosis. ^