5 resultados para Empirical Approach
em DigitalCommons@The Texas Medical Center
Resumo:
The purpose of this research is to examine the relative profitability of the firm within the nursing facility industry in Texas. An examination is made of the variables expected to affect profitability and of importance to the design and implementation of regulatory policy. To facilitate this inquiry, specific questions addressed are: (1) Do differences in ownership form affect profitability (defined as operating income before fixed costs)? (2) What impact does regional location have on profitability? (3) Do patient case-mix and access to care by Medicaid patients differ between proprietary and non-profit firms and facilities located in urban versus rural regions, and what association exists between these variables and profitability? (4) Are economies of scale present in the nursing home industry? (5) Do nursing facilities operate in a competitive output market characterized by the inability of a single firm to exhibit influence over market price?^ Prior studies have principally employed a cost function to assess efficiency differences between classifications of nursing facilities. The inherent weakness in this approach is that it only considers technical efficiency. Not both technical and price efficiency which are the two components of overall economic efficiency. One firm is more technically efficient compared to another if it is able to produce a given quantity of output at the least possible costs. Price efficiency means that scarce resources are being directed towards their most valued use. Assuming similar prices in both input and output markets, differences in overall economic efficiency between firm classes are assessed through profitability, hence a profit function.^ Using the framework of the profit function, data from 1990 Medicaid Costs Reports for Texas, and the analytic technique of Ordinary Least Squares Regression, the findings of the study indicated (1) similar profitability between nursing facilities organized as for-profit versus non-profit and located in urban versus rural regions, (2) an inverse association between both payor-mix and patient case-mix with profitability, (3) strong evidence for the presence of scale economies, and (4) existence of a competitive market structure. The paper concludes with implications regarding reimbursement methodology and construction moratorium policies in Texas. ^
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^
Resumo:
The research project is an extension of a series of administrative science and health care research projects evaluating the influence of external context, organizational strategy, and organizational structure upon organizational success or performance. The research will rely on the assumption that there is not one single best approach to the management of organizations (the contingency theory). As organizational effectiveness is dependent on an appropriate mix of factors, organizations may be equally effective based on differing combinations of factors. The external context of the organization is expected to influence internal organizational strategy and structure and in turn the internal measures affect performance (discriminant theory). The research considers the relationship of external context and organization performance.^ The unit of study for the research will be the health maintenance organization (HMO); an organization the accepts in exchange for a fixed, advance capitation payment, contractual responsibility to assure the delivery of a stated range of health sevices to a voluntary enrolled population. With the current Federal resurgence of interest in the Health Maintenance Organization (HMO) as a major component in the health care system, attention must be directed at maximizing development of HMOs from the limited resources available. Increased skills are needed in both Federal and private evaluation of HMO feasibility in order to prevent resource investment and in projects that will fail while concurrently identifying potentially successful projects that will not be considered using current standards.^ The research considers 192 factors measuring contextual milieu (social, educational, economic, legal, demographic, health and technological factors). Through intercorrelation and principle components data reduction techniques this was reduced to 12 variables. Two measures of HMO performance were identified, they are (1) HMO status (operational or defunct), and (2) a principle components factor score considering eight measures of performance. The relationship between HMO context and performance was analysed using correlation and stepwise multiple regression methods. In each case it has been concluded that the external contextual variables are not predictive of success or failure of study Health Maintenance Organizations. This suggests that performance of an HMO may rely on internal organizational factors. These findings have policy implications as contextual measures are used as a major determinant in HMO feasibility analysis, and as a factor in the allocation of limited Federal funds. ^
Resumo:
This dissertation develops and tests through path analysis a theoretical model to explain how socioeconomic, socioenvironmental, and biologic risk factors simultaneously influence each other to further produce short-term, depressed growth in preschoolers. Three areas of risk factors were identified: child's proximal environment, maturational stage, and biological vulnerability. The theoretical model represented both the conceptual framework and the nature and direction of the hypotheses. Original research completed in 1978-80 and in 1982 provided the background data. It was analyzed first by nested-analysis of variance, followed by path analysis. The study provided evidence of mild iron deficiency and gastrointestinal symptomatology in the etiology of depressed, short-term weight gain. Also, there was evidence suggesting that family resources for material and social survival significantly contribute to the variability of short-term, age-adjusted growth velocity. These results challenge current views of unifocal intervention, whether for prevention or control. For policy formulations, though, the mechanisms underlying any set of interlaced relationships must be decoded. Theoretical formulations here proposed should be reassessed under a more extensive research design. It is suggested that studies should be undertaken where social changes are actually in progress; otherwise, nutritional epidemiology in developing countries operates somewhere between social reality and research concepts, with little grasp of its real potential. The study stresses that there is a connection between substantive theory, empirical observation, and policy issues. ^