7 resultados para Embryo aggregation

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in developmental biology is to understand the mechanisms that govern the development of an adult individual from a single cell. Goosecoid (Gsc) is an evolutionarily conserved homeobox gene that has been cloned in vertebrates and in Drosophila. In mice, Gsc is first expressed during gastrulation stages where it marks anterior structures of the embryo, this pattern of expression is conserved among vertebrates. Later, expression is observed during organogenesis of the head, limbs and the trunk. The conserved pattern of expression of Gsc during gastrulation and gain of function experiments in Xenopus suggested a function for Gsc in the development of anterior structures in vertebrates. Also, its expression pattern in mouse suggested a role in morphogenesis of the head, limbs and trunk. To determine the functional requirement of Gsc in mice a loss of function mutation was generated by homologous recombination in embryonic stem cells and mice mutant for Gsc were generated.^ Gsc-null mice survived to birth but died hours after delivery. Phenotypic analysis revealed craniofacial and rib cage abnormalities that correlated with the second phase of Gsc expression in the head and trunk but no anomalies were found that correlated with its pattern of expression during gastrulation or limb development.^ To determine the mode of action of Gsc during craniofacial development aggregation chimeras were generated between Gsc-null and wild-type embryos. Chimeras were generated by the aggregation of cleavage stage embryos, taking advantage of two different Gsc-null alleles generated during gene targeting. Chimeras demonstrated a cell-autonomous function for Gsc during craniofacial development and a requirement for Gsc function in cartilage and mesenchymal tissues.^ Thus, during embryogenesis in mice, Gsc is not an essential component of gastrulation as had been suggested in previous experiments. Gsc is required for craniofacial development where it acts cell autonomously in cartilage and mesenchymal tissues. Gsc is also required for proper development of the rib cage but it is dispensable for limb development in mice. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of nutrient intake, genetic factors and common household environmental factors on the aggregation of fasting blood glucose among Mexican-Americans in Starr County, Texas. This study was designed to determine: (a) the proportion of variation of fasting blood glucose concentration explained by unmeasured genetic and common household environmental effects; (b) the degree of familial aggregation of measures of nutrient intake; and (c) the extent to which the familial aggregation of fasting blood glucose is explained by nutrient intake and its aggregation. The method of path analysis was employed to determine these various effects.^ Genes play an important role in fasting blood glucose: Genetic variation was found to explain about 40% of the total variation in fasting blood glucose. Common household environmental effects, on the other hand, explained less than 3% of the variation in fasting blood glucose levels among individuals. Common household effects, however, did have significant effects on measures of nutrient intake, though it explained only about 10% of the total variance in nutrient intake. Finally, there was significant familial aggregation of nutrient intake measures, but their aggregation did not contribute significantly to the familial aggregation of fasting blood glucose. These results imply that similarities among relatives for fasting blood glucose are not due to similarities in nutrient intake among relatives. ^