5 resultados para Embankment Model Tests
em DigitalCommons@The Texas Medical Center
Resumo:
This study examines the individual and health care system determinants of two types of preventive health care practice behaviors, having a routine physical exam or a preventive dental exam, in the past year among Chicanos in the Southwestern United States. The study utilizes the Health System Model, developed by Aday and Andersen in 1974, to analyze the relative effect of education, income and occupation on the use of discretionary health care, controlling for other individual and health care system determinants.^ The study is based on a sample of 4,111 Mexican origin adults, drawn from the Hispanic Health and Nutrition Examination Survey (HHANES). This sample is representative of Mexican American residing in the Southwestern United States.^ The study tests the hypothesis that education is the most important social class predictor of preventive health care practice behavior. The fully elaborated model tests the hypothesis that individual determinants alone are insufficient to explain the use of preventive health care services among Chicanos.^ The study found that education and income are statistically significant social class indicators only as it relates to having a preventive dental exam. Education is not the most important social class predictor of either preventive health care practice behavior. Health care system determinants are key predictors of both behaviors. Need, as measured by self-perceived health status of teeth and gender, is as important a determinant as having dental insurance coverage as it relates to having a preventive dental exam. Implications for health programs to effectively reach Chicano target groups and remove access barriers to their use of discretionary health care services are discussed. ^
Resumo:
Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.
Resumo:
With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^
Resumo:
As the requirements for health care hospitalization have become more demanding, so has the discharge planning process become a more important part of the health services system. A thorough understanding of hospital discharge planning can, then, contribute to our understanding of the health services system. This study involved the development of a process model of discharge planning from hospitals. Model building involved the identification of factors used by discharge planners to develop aftercare plans, and the specification of the roles of these factors in the development of the discharge plan. The factors in the model were concatenated in 16 discrete decision sequences, each of which produced an aftercare plan.^ The sample for this study comprised 407 inpatients admitted to the M. D. Anderson Hospital and Tumor Institution at Houston, Texas, who were discharged to any site within Texas during a 15 day period. Allogeneic bone marrow donors were excluded from the sample. The factors considered in the development of discharge plans were recorded by discharge planners and were used to develop the model. Data analysis consisted of sorting the discharge plans using the plan development factors until for some combination and sequence of factors all patients were discharged to a single site. The arrangement of factors that led to that aftercare plan became a decision sequence in the model.^ The model constructs the same discharge plans as those developed by hospital staff for every patient in the study. Tests of the validity of the model should be extended to other patients at the MDAH, to other cancer hospitals, and to other inpatient services. Revisions of the model based on these tests should be of value in the management of discharge planning services and in the design and development of comprehensive community health services.^
Resumo:
Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. The proteins of these genes form a complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1), which controls protein translation and cell growth. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. However, both disorders share cerebellar abnormalities. Therefore, we have characterized a novel mouse model in which the Tsc2 gene was selectively deleted from cerebellar Purkinje cells (Tsc2f/-;Cre). These mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well-reported postmortem finding in patients with ASD, we conducted a series of behavior tests to assess if Tsc2f/-;Cre mice displayed autistic-like deficits. Using the three chambered social choice assay, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. Tsc2f/-;Cre mice also demonstrated increased repetitive behavior as assessed with marble burying activity. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a haploinsufficient background lead to behavioral deficits that are characteristic of human autism. Therefore, Purkinje cells loss and/or dysfunction may be an important link between TSC and ASD. Additionally, we have examined some of the cellular mechanisms resulting from mutations in Tsc2 leading to Purkinje cell death. Loss of Tsc2 led to upregulation of mTORC1 and increased cell size. As a consequence of increased protein synthesis, several cellular stress pathways were upregulated. Principally, these included altered calcium signaling, oxidative stress, and ER stress. Likely as a consequence of ER stress, there was also upregulation of ubiquitin and autophagy. Excitingly, treatment with an mTORC1 inhibitor, rapamycin attenuated mTORC1 activity and prevented Purkinje cell death by reducing of calcium signaling, the ER stress response, and ubiquitin. Remarkably, rapamycin treatment also reversed the social behavior deficits, thus providing a promising potential therapy for TSC-associated ASD.